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The Carr–Purcell–Meiboom–Gill (CPMG) experiment is widely used to quantitatively analyse the effects
of chemical exchange on NMR spectra. In a CPMG experiment, the effective transverse relaxation rate,
R2,eff, is typically measured as a function of the pulse frequency, mCPMG. Here, an exact expression for
how R2,eff varies with mCPMG is derived for the commonly encountered scenario of two-site chemical
exchange of in-phase magnetisation. This result, summarised in Appendix A, generalises a frequently
used equation derived by Carver and Richards, published in 1972. The expression enables more rapid
analysis of CPMG data by both speeding up calculation of R2,eff over numerical methods by a factor of
ca. 130, and yields exact derivatives for use in data analysis. Moreover, the derivation provides insight
into the physical principles behind the experiment.
� 2014 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

Many chemical systems analysed by NMR spectroscopy sponta-
neously undergo dynamical changes that lead to variation in the
isotropic chemical shift over time. When the frequency of these
processes is similar to the frequency of the chemical shift differ-
ence, interference effects lead to changes in the intensity, linewidth
and frequency of observed resonances. Collectively termed chemi-
cal exchange phenomena, these effects can be quantitatively
probed with suitable experiments to provide insight into the
underlying molecular processes [1,2]. CPMG experiments [3,4] are
a notable example [5] that can provide kinetic and thermodynamic
information describing the exchange process, and also structures of
the interconverting states [29–32], even when the population of
one of the interconverting conformers is as low as 1%.

As anticipated in an early piece of theoretical work [6], CPMG
experiments have led to important insights into biomolecular pro-
cesses. These methods have revealed sparsely populated confor-
mational states, termed ‘excited’ states, in proteins have been
identified that are critical for functions as diverse as enzymatic
catalysis [7–9], molecular recognition [10], quaternary dynamics
[11–13] and protein folding [14–17]. Extensive efforts over recent
years has resulted in a number of individually tailored CPMG
experiments and associated labelling schemes to measure not only
isotropic chemical shifts of excited states [18–24] but also struc-
tural features such as bond vector orientations [25–28]. These
experiments together enable elucidation of structures of these
hitherto unknown, but functionally important biomolecular con-
formational states [29–32].

In order to accurately extract meaningful parameters, CPMG
data must be related to an appropriate theory. There are two com-
monly applied approaches to simulate the experimental data. The
first relies on closed form solutions to the Bloch–McConnell
equations [33] such as the Carver Richards equation [6] (Fig. 1), a
result found implemented in freely available software [34–36].
When the population of the minor state exceeds approximately
1% however, calculation errors that are significantly larger than
the experimental uncertainty can accumulate when this result is
used (Fig. 1), which can lead to errors in the extracted parameters.
Further insight has come from results that have been derived in
specific kinetic regimes [37,38,42], revealing which mechanistic
parameters can be reliably extracted from data in these limits. In
addition more recently, an algorithm that constitutes an exact
solution has been described [37] derived in silico using the analysis
software maple. As described in Supplementary Section 8, while
exact, this algorithm can lead to errors when evaluated at double
floating point precision, as used by software such as MATLAB.
While the closed form results described above are relatively fast
from a computational perspective, they are approximate. A second
approach for data analysis involves numerically solving the
Bloch–McConnell equations [15,28], where additional and relevant
physics such as the non-ideal nature of pulses [39,40], scalar cou-
pling and differential relaxation of different types of magnetisation
are readily incorporated. While the effects of these additional
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Fig. 1. The effective relaxation rate R2,eff calculated numerically RNum
2;eff

� �
and using the Carver Richards equation (RCR

2;eff , Eq. (49)) in the case where R2
G = R2

E = 10 s�1,

Dx = 0.5 ppm, with a Lamor frequency of 200 MHz for a range of exchange rates and populations, for Ncyc = 2, Trelax = 20 ms, and so mCPMG = 100 Hz. (A) The numerically

derived relaxation rate, RNum
2;eff . (B) The difference in relaxation rates, jRCR

2;eff � RNum
2;eff j. Under many conditions, notably low PE, the Carver Richards equation is in excellent

quantitative agreement with the data. Outside of this regime, there are significant deviations. The experimental error on R2,eff measurements is expected to be on the order of

0.3 s�1. The region shown in orange and red correspond to a region where the error is greater than 0.3 s�1, indicating where systematic errors in fitted parameters will be

incurred. Extensive numerical tests of our new result (Eq. (50)) reveal a maximum error of less than 10�9 s�1 corresponding to the threshold of computational precision. (C)

The percentage error incurred using the Carver Richards equation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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physics can be negligible, their explicit inclusion is recommended,
when accurate parameters are required for structure calculations
[29–32]. Nevertheless, closed form solutions can provide greater
insight into the physical principles behind experiments than
numerical simulation. Motivated by this principle, here, an exact
solution for the effective transverse relaxation rate in a CPMG
experiment, R2,eff, in the commonly encountered scenario of two-
site exchange of in-phase magnetisation (Eq. (50)) is derived. The
result is expressed as a linear correction to the Carver Richards
equation (summarised in Appendix A), and algorithms based on
this have advantages in both precision and speed over existing for-
mulaic approaches (Supplementary Section 8).

In a CPMG experiment, transverse magnetisation is first created,
and then allowed to evolve through a series of spin echoes. In this
work it is defined that each consists of two delays of duration of
scp, separated by a 180� pulse. A single CPMG element is two con-
catenated echoes, which in the absence of relaxation and chemical
exchange, returns transverse magnetisation to an identical state to
which it started. In the complete experiment, Ncyc CPMG elements
are further concatenated, leading to a pulsing frequency,
vCPMG = Ncyc/Trel and the total time of the CPMG element is
Trel = 4scpNcyc. The change in signal intensity and hence R2,eff due
to the exchange process is then monitored as a function of vCPMG.

In the case of two-site chemical exchange, in the absence of
pulses, in-phase magnetisation will evolve at two distinct frequen-
cies. As a useful book keeping exercise, one frequency can be asso-
ciated with an ensemble of molecules that are primarily (but not
entirely) in the majorly populated (ground) state, and the second
with an ensemble of molecules that are primarily (but not entirely)
in the minorly populated (excited) state. Both ensembles are mixed
states whose exact ground/excited ‘composition’ depends explic-
itly on the exchange parameters. It is shown here that a 180� pulse
does not simply invert the chemical shift, as it would a pure state.
Instead, it further mixes these two ensembles. Consequently, after
the second evolution period, four frequencies emerge from a spin
echo, corresponding to magnetisation that started and finished
on either the ground or excited states, and that which started on
the ground and finished in the excited, or vice versa. While the first
two pathways are entirely refocused in terms of their chemical
shift, the second two are not. The 180� pulse can therefore be con-
sidered ‘leaky’, as not all magnetisation is refocused. When multi-
ple Hahn echoes are concatenated in a CPMG experiment, the
number of discrete frequencies increases. The derivation of the
CPMG signal intensity relies on determining how ‘leaky’ a single
Please cite this article in press as: A.J. Baldwin, An exact solution for R2,eff in CP
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CPMG element is, identifying which frequencies are present at
the end, evaluating their weighting factors and calculating how
these depend on the details of the exchange process.

Each of the discrete frequencies that emerge from a CPMG block
can be associated with a mixture of ground and excited state ensem-
bles. A higher proportion of time spend in the excited state leads to
more efficient relaxation, and loss of signal intensity. As a conse-
quence, only frequencies that arise predominantly from the ground
state ensemble contribute significantly to the observed resonance.
At low pulsing frequency, there are few such frequencies. At high
pulsing frequency, there are many more such slowly relaxing terms
present. It is these slowly relaxing terms that give rise to the char-
acteristic increase in signal observed in a CPMG experiment.

2. Derivation

An expression for the effective transverse relaxation rate of the
ground state ensemble is sought:

R2;eff ¼ �
1

Trel
ln

IGðTrelÞ
IGð0Þ

ð1Þ

where Trel is the total time of the concatenated CPMG elements and
IG specifies the signal intensity from the observed ground state at
the specified times. In order to calculate the relevant signal intensi-
ties a kinetic model for the exchange process and types of magnet-
isation present need to be specified. The simplest and most widely
encountered kinetic scheme is the two-site case for in-phase mag-
netisation. Here, a ground state and an excited state undergo the

conformational rearrangement G ¢
kGE

kEG

E. In this scheme, the exchange

rate kEX = kEG + kGE and the fractional populations of the excited (PE)
and ground (PG) states are given by kGE/kEX and kEG/kEX respectively.
The CPMG experiment consists of a number of free precession ele-
ments interspersed with 180� pulses. To evaluate their combined
effect, how magnetisation evolves in the absence of pulses needs
first to be calculated. This is accomplished most conveniently
using the shift basis (I+ = Ix + iIy and I� = Ix � iIy) using a modified
Bloch–McConnell equation [33]:

d
dt

IþG
IþE

� �
¼ Rþ IþG

IþE

� �
ð2Þ

where E and G denote the magnetisation on the excited and ground
states, respectively. The evolution matrix is:
MG experiments in the case of two site chemical exchange, J. Magn. Reson.
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Rþ ¼
�kGE � RG

2 kEG

kGE �kEG � RE
2 � iDx

 !
ð3Þ

R2
G and R2

E specify the intrinsic relaxation of the ground and
excited states respectively, and Dx is the chemical shift difference
between the ground and excited states in rad s�1. The solution for
Eq. (2) is:

IðtÞ ¼ eRþt Ið0Þ ¼ OIð0Þ ð4Þ

where I(0) are I(t) specify the magnetisation on the ground and
excited states at time zero and t respectively. Initially the system
is in equilibrium, and so Ið0Þy ¼ ðPG; PEÞ where y indicates a trans-
pose. The derivation of I(t) first requires the well known matrix O
(Eq. (17)) that determines how magnetisation evolves during free
precession [2]. In the shift basis, the effect of a 180� on-resonance
ideal pulse switches magnetisation on I+ terms to I�, leading mag-
netisation to evolve according to the complex conjugate of R+

(Eq. (3)), (R+) �. Following a 180� pulse therefore, magnetisation will
evolve according to the matrix O �. By applying Eq. (4) iteratively,
taking the complex conjugate where appropriate, an expression
that represents the entire CPMG experiment can be built. This,
when used with Eq. (1) enables us to derive an expression for R2,eff.

The matrix M that represents the CPMG experiment will enable
us to evaluate I(t) = MI(0). This can be decomposed into Ncyc con-
catenated CPMG units, each of which is described by an evolution
matrix P, such that M = PNcyc. M can be calculated from P by diago-
nalisation to obtain PD, and then transforming it with its matrix of
Eigenvectors A, according to:

M ¼ PNcyc ¼ ðAPDA�1Þ
Ncyc ¼ APNcyc

D A�1 ð5Þ

The CPMG element P consists of two concatenated Hahn echoes,
H, each of which consists of two equal delays of duration scp,
separated by a 180� pulse (Eq. (30)):

H ¼ O�O ð6Þ

The effect of a single CPMG unit is then given by

P ¼ H�H ¼ OO�O�O ð7Þ

as derived in Eq. (42), from which M can be calculated using Eq. (5)
(Eq. (46)). As implicitly assumed by Carver and Richards, the effects
of chemical exchange during signal detection will be neglected
(though this assumption can be removed– see Supplementary
Section 7), and IG(Trel) calculated from:

IGðTrelÞ ¼ Mð0;0ÞPG þMð0;1ÞPE ð8Þ

where 0,0 and 0,1 specify the required matrix elements of M.
Insertion of this result into Eq. (1) gives the final result for R2,eff

(Eq. (50)), summarised in Appendix A. Combining the matrix
Eq. (46) with the results in Supplementary Section 7 to give R2,eff

including the effects of chemical exchange during detection will
further improve the theoretical description of the experiment [41].

2.1. Determination of O

The free precession matrix R+ can be related to its diagonalised
form RD via the transformation R = JRDJ�1 such that:

O ¼ eRþt ¼ eJRDJ�1 ¼ JeRþD tJ�1 ð9Þ

From which it follows that the matrix exponential is given in
terms of two characteristic frequencies, the Eigenvalues f00 and
f11, corresponding to the ground and excited state ensembles
respectively:

eRþD t ¼ e�tRG
2

e�tf00 0
0 e�tf11

 !
ð10Þ
Please cite this article in press as: A.J. Baldwin, An exact solution for R2,eff in CPM
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A factor of R2
G has been factored from both f00 and f11, which

allows us to express them conveniently in terms of the difference
in relaxation, DR2 = R2

E � R2
G in what follows and so:

f00 ¼ 1
2 ðDR2 þ kEX þ iDxÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ih1

p
f11 ¼ 1

2 ðDR2 þ kEX þ iDxÞ þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ih1

p ð11Þ

where

h1 ¼ 2DxðDR2 þ kEG � kGEÞ

h2 ¼ ðDR2 þ kEG � kGEÞ2 þ 4kEGkGE � Dx2 ð12Þ

The identity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ih1

p
¼ h3 þ ih4, enables us to explicitly sepa-

rate the real and the imaginary components of the Eigenvalues:

h3 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

1 þ h2
2

qr

h4 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

1 þ h2
2

qr
ð13Þ

In terms of these substitutions, f00 and f11 are then succinctly
expressed as:

f00 ¼ 1
2 ðDR2 þ kEX � h3Þ þ i

2 ðDx� h4Þ
f11 ¼ 1

2 ðDR2 þ kEX þ h3Þ þ i
2 ðDxþ h4Þ

ð14Þ

The real part of the two Eigenvalues, f00
R and f11

R describe the
effective relaxation rates of the two ensembles, and the imaginary
parts f00

I and f11
I define the frequencies where the resonance will

ultimately be observed. The imaginary component, f00
I denotes

the exchange-induced shift in the observed position of the ground
state resonance [24]. The following useful sum and difference
relations:

f R
11 þ f R

00 ¼ DR2 þ kEX

f I
11 þ f I

00 ¼ Dx
f R
11 � f R

00 ¼ h3

f I
11 � f I

00 ¼ h4

ð15Þ

play an important role in the CPMG experiment and emerge explic-
itly as arguments of trigonometric terms in the final expression for
R2,eff (Eq. (41)). As summarised in Supplementary Section 1, the two
frequencies reduce to simple and well-known expressions in the
fast and slow exchange regimes, though care must be taken when
defining the regime when DR2 – 0. To express the final form of
the propagator, two further factors related to the frequencies f00

and f11 are defined:

OG ¼ kGE � f00

OE ¼ f11 � kGE

N ¼ OG þ OE

ð16Þ

and so OGOE ¼ O�GO�E ¼ kEGkGE, and N ¼ h3 þ ih4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ih1

p
, a

quantity equal to kEX in the fast exchange limit (Supplementary
Section 1). In terms of these variables, the free precession evolution
matrix is:

O ¼ e�tRG
2

N
B00e�tf00 þ B11e�tf11
� �

ð17Þ

where

B00 ¼
OE kEG

kGE OG

� �
and B11 ¼

OG �kEG

�kGE OE

� �
: ð18Þ

As OEOG = kEGkGE, both B00/N and B11/N are idempotent such that
(Bxx/N)n = Bxx/N where xx = 00,11. The form of these matrices
allows us to gain physical insight into the coefficients. OE/N can
G experiments in the case of two site chemical exchange, J. Magn. Reson.
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be interpreted as a coefficient associated with the proportion of the
ensemble that ‘stay’ either in the ground or excited state, within
the ensemble, for the duration of the free precession, and OG/N is
the coefficient associated with the molecules that effectively ‘swap’
from the ground state ensemble to the excited state, and vice versa,
during free precession. Together, these matrices define the ‘compo-
sition’ of the mixed ground and excited state ensembles. Both B00/N
and B11/N are idempotent and orthogonal, and so when the matri-
ces are raised to a power:

On ¼ e�ntR2g

N
B00e�ntf00 þ B11e�ntf11
� �

ð19Þ

The observed ground state signal is therefore given by (Eq. (8)):

IGðtÞ¼
e�tRG

2

N
e�tf00 pGf11þpEðkEX� f00Þð Þþe�tf11 �pGf00þpEðf11�kEXÞð Þ
� �

ð20Þ

The spectrum will be a weighted sum of precisely two reso-
nances that evolve with complex frequencies f00 and f11 (Fig. 2A).
When considering chemical exchange from a microscopic perspec-
tive, it is intuitive that any single molecule will not spend all of its
time in any one of the two states. Nevertheless, two ensembles can
be identified, loosely described as those that spend most of their
time on the ground state and those that spend most of their time
on the excited state, associated with frequencies f00 and f11, and
weighting matrices B00 and B11, respectively. Armed with O
(Eq. (19)), expressions for both for a Hahn Echo, and the CPMG
propagator can be derived.

2.2. Derivation of the spin echo propagator

The basic repeating unit of the CPMG experiment is a Hahn
echo, where two delays of duration scp are separated by a 180�
pulse, H = O �O. Two of these are required to give us the CPMG
propagator, P = H �H. H can be determined from Eq. (19):

H ¼ e�2scpRG
2

NN�
B�00e�scpf �00 þ B�11e�scpf �11
� �

B00e�scpf00 þ B11e�scpf11
� �

ð21Þ

Expanding this reveals four discrete frequencies that corre-
spond to sums and differences of f00 and f11 (Fig. 2B). That which
‘stays’ in the same ensemble (exp(�scp(f00 + f00

� )) or exp(�scp(f11 +
f11
� ))) for the duration will be refocused. That which start in one,

then effectively ‘swaps’ after the first 180� pulse will accrue net
phase (exp(�scp(f00 + f11

� )) or exp(�scp(f11 + f00
� ))). Note that this

terminology should not imply that radiofrequency pulses are
affecting the change. It is instead an accounting perspective for
describing how the magnetisation will appear. Defining two fre-
quencies, one real and one imaginary:

�0 ¼ � f R
00 � f R

11

� �
¼ h3

�1 ¼ �i f I
00 � f I

11

� �
¼ ih4 ð22Þ
Fig. 2. A solid line indicates evolution according to R+, and a dashed line indicates evol
presence of chemical exchange, signal can be separated into two distinct groups with d
chemical exchange, in the sense that not all magnetisation is refocused, leading to additi
echo (Eq. (30)), signal can be separated into four distinguishable frequencies that are defi
(Eq. (22)). Magnetisation that ‘stays’ in either the ground or excited state ensemble i
molecules effectively ‘swaps’ into the other ensemble, and are not complete refocused (±e
of exp((f00

R + f00
I)scp) has been factorised from the expression after the arrow.

Please cite this article in press as: A.J. Baldwin, An exact solution for R2,eff in CP
(2014), http://dx.doi.org/10.1016/j.jmr.2014.02.023
then:

H¼e�scp RG
2þRE

2þkexð Þ
NN�

ðB�00escp�0þB�11escp�1 ÞB00þðB�11e�scp�0þB�00e�scp�1 ÞB11
� �

ð23Þ

where the average relaxation rate exp(�scp(f00
R + f11

R)) = exp(�scp

(DR2 + kex)) has been factored out. At the end of this period, magnet-
isation that has been entirely refocused will evolve with a purely
real frequency, ±e0, and magnetisation that has not, will evolve with
frequencies ±e1. By a similar procedure, the propagator for the
second half of the CPMG block can be derived by noting that the
complex conjugate of e1 is obtained by multiplying it by �1:

H�¼e�scpðRG
2þRE

2þkexÞ

NN�
ðB00escp�0þB11e�scp�1 ÞB�00þðB11e�scp�0þB00escp�1 ÞB�11

� �
ð24Þ

Further progress can be made by identifying additional simpli-
fying relations. The elements of idempotent B00 and B11 satisfy the
condition B(1,0)B(0,1) = B(1,1)B(0,0) where the brackets indicate
specific rows and columns of the matrix. In such a case, for a matrix
product AB, A can be replaced by a diagonal matrix C such that
AB = CB. As derived in Supplementary Section 2, the two diagonal
coefficients of C are given by Eq. (66). Dealing with matrix products
is cumbersome, and so replacing one of the two matrices with one
that is diagonal will be shown to be greatly simplifying (see
Eq. (35)). In doing so, the following identities are obtained:

Cst � B00 ¼ B�00 � B00

C�st � B11 ¼ B�11 � B11

Csw � B00 ¼ B�11 � B00

Csw0 � B11 ¼ B�00 � B11

ð25Þ

which follow from the definition of ‘stay’ and ‘swap’ diagonal matri-
ces using Eq. (66):

Cst ¼
Pst 0
0 P�st

� �
; Csw ¼

Psw 0
0 Psw0

� �
; Csw0 ¼

Psw0 0
0 Psw

� �
ð26Þ

The individual matrix elements are given by:

Pst ¼ OG þ O�E ¼ h3 � iDx

Psw ¼ O�G � OG ¼ �iðh4 � DxÞ
Psw0 ¼ O�E � OE ¼ �iðh4 þ DxÞ

ð27Þ

From these definitions, the following useful identities emerge:

P�stOG ¼ PstO
�
G

PstOE ¼ P�stO
�
G

PswO�G ¼ �Psw0OE

Psw0OG ¼ �PswO�E

ð28Þ
ution after a 180� pulse, according (R+) �. (A) During a free precession period in the
istinguishable frequencies (Eq. (17)). (B) A Hahn echo is ‘leaky’ in the presence of

onal mixing between the ground and excited state ensembles. At the end of the spin
ned by differences between either the real (e0) or imaginary (e1) parts of f00 and f11

s refocused (±e0), having no imaginary component. However, a proportion of the
1). The final terms with their weighting coefficients are illustrated. Note that a factor

MG experiments in the case of two site chemical exchange, J. Magn. Reson.
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These definitions reveal an important physical interpretation of
these cofactors. In the case where magnetisation stays in either the
ground or excited state following a 180� pulse, it is multiplied by a
‘stay’ matrix of the form Cst. In the case where magnetisation effec-
tively swaps to the other state, it is multiplied by a ‘swap’ matrix,
Csw or Csw0. The conjugate of either of the swap matrices is obtained
by multiplication by �1, leading to the conjugates of Eq. (25):

C�st � B
�
00 ¼ B00 � B�00

Cst � B�11 ¼ B11 � B�11

� Csw � B�00 ¼ B11 � B�00

� Csw0 � B�11 ¼ B00 � B�11

ð29Þ

These operations enable us to arrive at a simplified expression
for the two Hahn echo propagators.

H ¼ e�scp RG
2þRE

2þkexð Þ
NN�

ððCstescp�0 þ Cswescp�1 ÞB00

þ ðC�ste
�scp�0 þ Csw0e�scp�1 ÞB11Þ ð30Þ

H� ¼ e�scpðRG
2þRE

2þkexÞ

NN�
ððC�ste

scp�0 � Cswe�scp�1 ÞB�00

þ ðCste�scp�0 � Csw0escp�1 ÞB�11Þ ð31Þ

The Hahn echoes in the case of exchange are therefore ‘leaky’ in
the sense that they do not completely refocus all the magnetisa-
tion. A proportion of the magnetisation ‘stays’ in either the ground
or excited state after the 180� pulse. However, a proportion also
‘swaps’ into the other state, and is not completely refocused
(Fig. 2B).

2.3. Derivation of the CPMG propagator

Substituting Eq. (21) and its complex conjugate into Eq. (7)
allows us to derive an expression for the CPMG propagator P:

P ¼ e�4scpRG
2

NNN�N�
ðB00e�scpf00 þ B11e�scpf11 ÞðB�00e�scpf00 þ B�11e�scpf11 Þ

� ðB�00e�scpf00 þ B�11e�scpf11 ÞðB00e�scpf00 þ B11e�scpf11 Þ ð32Þ

This can be simplified by noting that B00 and B11 are orthogonal.
Secondly, Bxx

�Bxx
� = N �Bxx

� where xx = 00,11 as the matrices are
idempotent. This enables the immediate removal of two of the four
terms produced by expanding the central two brackets:

P ¼ e�4scpRG
2

NNN�
B00e�scpf00 þ B11e�scpf11
� �

B�00e�2scpf �00 þ B�11e�2scpf �11
� �

� B00e�scpf00 þ B11e�scpf11
� �

ð33Þ

Physically this corresponds to the fact that there are effectively
three free precession periods to consider in the CPMG element of
length scp, 2scp and scp respectively in the CPMG element, rather
than four, which is implied when two Hahn Echoes are directly
concatenated. Expanding Eq. (33) and substituting the triple
matrix products of BxxByy

�Bzz matrices (xx,yy,zz = 00 or 11) for their
complimentary diagonal matrices defined in Eqs. (25) and (29) and
frequencies (Eqs. 22):

P¼ e�2scp ðRG
2þRE

2þkexÞ

NNN�

C�stCste2scp�0þ
�CswCstescpð�0��1Þþ
CstCswe�scpð�0��1Þþ
�Csw0Cswe2scp�1

0
BBB@

1
CCCAB00þ

CstC
�
ste
�2scp�0þ

C�stCsw0escpð�0��1Þþ
�Csw0C

�
ste
�scpð�0��1Þþ

�CswCsw0e�2scp�1

0
BBB@

1
CCCAB11

0
BBB@

1
CCCA

ð34Þ

The products of the ‘stay/stay’ and ‘swap/swap’ matrices have a
very simplifying property, which is the motivation for introducing
them:
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CstC
�
st ¼

Pst 0
0 P�st

� �
P�st 0
0 Pst

� �
¼ PstP

�
st

1 0
0 1

� �

CswCsw0 ¼
Psw 0
0 Psw0

� �
Psw0 0

0 Psw

� �
¼ PswPsw0

1 0
0 1

� � ð35Þ

The products of these matrices amount to multiplication by a
constant. Defining:

F0 ¼ PstP
�
st=NN� ¼ ðDx2 þ h2

3Þ=NN�

F2 ¼ PswPsw0=NN� ¼ ðDx2 � h2
4Þ=NN� ð36Þ

where F0 � F2 = 1, and the normalisation factor NN� ¼ h2
3 þ h2

4. The
propagator then becomes:

P ¼ e�2scpðRG
2þRE

2þkexÞ

N
ðF0e2scp�0 � F2e2scp�1 ÞB00
�

þðF0e�2scp�0 � F2e�2scp�1 ÞB11 þ ðe�scpð�0��1Þ � escpð�0��1ÞÞ
CstCswB00 � C�stCsw0B11Þ=NN�
� �

ð37Þ

The product of the stay/swap matrices do not simplify quite as
neatly. Defining:

CstCsw ¼
Fa

1 0

0 Fb
1

 !
and C�stCsw0 ¼

Fb
1 0

0 Fa
1

 !
; where :

f a
1 ¼ PstPsw=NN� ¼ ðh4 � DxÞð�ih3 � DxÞ=NN�

f b
1 ¼ P�stPsw0=NN� ¼ ðh4 þ DxÞð�ih3 þ DxÞ=NN�

ð38Þ

where Fa
1 þ Fb

1 ¼ ð2Dx2 � ih1Þ=NN�. These results lead to the
definition:

B01 ¼ CswCstB00 � C�stCsw0B11 ¼
Fa

1OE � Fb
1OG ðFb

1 þ Fa
1ÞkEG

ðFb
1 þ Fa

1ÞkGE Fb
1OG � Fa

1OE

 !

ð39Þ

Noting that Fb
1OG ¼ �Fa

1OE, proven from Eq. (28), then:

B01 ¼
2Fa

1OE ðFa
1 þ Fb

1ÞkEG

ðFa
1 þ Fb

1ÞkGE 2Fb
1OG

 !
ð40Þ

Noting the following four frequencies from Eq. (22), composite
frequencies can be defined:

E0 ¼ 2�0 ¼ �2ðf R
00 � f R

11Þ ¼ 2h3

E2 ¼ 2�1 ¼ �2iðf I
00 � f I

11Þ ¼ 2ih4

E1 ¼ ðE0 � E2Þ=2 ¼ �0 � �1 ¼ �ðf R
00 � f R

11Þ þ iðf I
00 � f I

11Þ ¼ h3 � ih4

ð41Þ

which leads to an expression for the final CPMG propagator, a cen-
tral result of this paper, in terms of the matrices B00, B11 and B01,
(Eqs. (18) and (40)) the factors N, F0 and F2 (Eq. (36)) and the fre-
quencies E0, E1 and E2 (Eq. (41)):

P¼ e�2scpðRG
2þRE

2þkexÞ

N
ððF0escpE0 �F2escpE2 ÞB00þðF0e�scpE0 �F2e�scpE2 ÞB11

þðe�scpE1 �escpE1 ÞB01Þ ð42Þ

The coefficients allow physical insight into the types of magnet-
isation that emerge from a CPMG element (Fig. 3A). Magnetisation
takes on one of six discrete evolution frequencies, ±E0, ±E1 and ±E2.
Signal that stays with either the ground or excited state ensembles
for the duration of the CPMG element is successfully refocused,
associated with the factor F0 and real frequencies ±E0. By contrast,
a portion of the signal effectively swaps from the ground to the
excited state twice, once after each 180� pulse. This magnetisation
accrues the most net phase, is associated with the factor F2, and the
imaginary frequencies ±E2. A further set of signal is associated with
G experiments in the case of two site chemical exchange, J. Magn. Reson.
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Fig. 3. (A) After one Hahn Echo, signal is split into four discrete frequencies (Fig. 2B). When two Hahn Echoes are concatenated to form a single CPMG element, signal is
correspondingly split into eight terms (Eq. (42)) with weighting factors that span six unique evolution frequencies (Eq. (41)). Terms that stay in either the ground or excited
state ensemble are entirely refocused, and are associated with the purely real evolution frequencies ±E0. By contrast, the least refocused magnetisation swaps ensemble after
both pulses, and can be associated with the imaginary frequencies ±E2. Between these two cases is the partially refocused magnetisation that evolves at the complex
frequencies ±E1. The terms with their weighting coefficients are illustrated. Note that a factor of exp(�2scp(f00

R + f11
R)) has been factorised from the expression, after the arrow.

(B) The six frequencies can all be expressed in terms of the difference between either the real part or the imaginary parts of f00 and f11, and normalised as explained in the text.
The six frequencies give a distinctive geometric pattern when visualised in terms of their real and imaginary components. Here, Trel = 20 ms. As f11

R � f00
R , the term with the

lowest relaxation rate is +E0 that falls at the bottom of the diamond. This term reflects magnetisation that stays in the ground state ensemble for the duration of the element,
and dominates the final observed signal.
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swapping at only one of the two 180� pulses, is associated with the
matrix B01 and evolves at the complex frequencies ±E1. Overall,
incoming signal is split into six, each accruing its own phase,
±E0scp, ±E1scp or ±E2scp. These frequencies are multiples of each
other, and form a distinctive diamond shape when the real and
imaginary components are visualised (Fig. 3B).

2.4. Derivation of expression for CPMG intensity

To obtain an expression for the CPMG intensity, the CPMG prop-
agator P (Eq. (42)) is raised to the power of Ncyc:

M ¼ C
N
ððF0escpE0 � F2escpE2 ÞB00 þ ðF0e�scpE0 � F2e�scpE2 ÞB11

þðe�scpE1 � escpE1 ÞB01ÞNcyc ð43Þ

where scp = Trel/(4Ncyc) and:

C ¼ e�Trel

�
RG

2þRE
2þkEX

�	
2 ð44Þ

Using the prescription in Eq. (5) and the definitions in Supple-
mentary Section 3, this can be efficiently accomplished by first
diagonalising P, raising the diagonal elements to the required
power of Ncyc and then returning the matrix to the original basis.
First the constants required by Eq. (68) are defined, and then
placed into Eq. (69). Making use of the trigonometric identities
2 sinh(x) = ex � e�x and 2 cosh(x) = ex + e�x, and the definitions for
Ex (Eq. (41)) and Fx (Eq. (36)):

v1c ¼ F0 coshðscpE0Þ � F2 coshðscpE2Þ
v1s ¼ F0 sinhðscpE0Þ � F2 sinhðscpE2Þ
v2N ¼ v1sðOE � OGÞ þ 4OEFa

1 sinhðscpE1Þ

pDN ¼ v1s þ ðFa
1 þ Fb

1Þ sinhðscpE1Þ

v3 ¼ ðv2
2 þ 4kEGkGEp2

DÞ
1=2

y ¼ ðv1c � v3

v1c þ v3
Þ

Ncyc

ð45Þ

Noting that as E2 is imaginary, cosh(scpE2) = cos(scp|E2|) and
sinh(scpE2) = isin(scp|E2|) where the |x| denotes complex modulus.
The concatenated CPMG elements have the evolution matrix:

M ¼ Cðv1c þ v3ÞNcyc

1
2 ð1þ yþ v2

v3
ð1� yÞÞ kEGpD

v3
ð1� yÞ

kGEpD
v3
ð1� yÞ 1

2 ð1þ y� v2
v3
ð1� yÞÞ

0
@

1
A
ð46Þ
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From Eq. (46) the effective relaxation rate, R2,eff, for the ground
state magnetisation can be calculated using Eqs. (1), (8), and (46),
neglecting the effects of chemical exchange during signal detection
(see Supplementary Section 7 for removing this assumption). As
IG(0) = PG, the central result of the paper is derived, an exact
expression for R2,eff:

R2;eff ¼
RG

2 þ RE
2 þ kEX

2
� Ncyc

Trel
lnðv1c þ v3Þ

� 1
Trel

ln
1þ y

2
þ 1� y

2v3
ðv2 þ 2kGEpDÞ

� �
ð47Þ

Finally, as proven in Supplementary Section 4, v3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1c � 1
p

,

enabling us to use the identity cosh�1ðv1cÞ ¼ Inðv1c þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1c � 1
q

Þ
and express the result in a simplified form, summarised in Appen-
dix A:

R2;eff ¼
RG

2 þ RE
2 þ kEX

2
� Ncyc

Trel
cosh�1ðv1cÞ

� 1
Trel

ln
1þ y

2
þ 1� y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1c � 1
q ðv2 þ 2kGEpDÞ

0
B@

1
CA ð48Þ
3. Comparison to Carver Richards equation

It is interesting to compare this result (Eq. (48)) to the original
Carver Richards equation [6]. The explicit relations between our
parameters and those in the original work are presented formally
in Supplementary Section 4. In terms of present definitions, the
Carver Richards equation is:

RCR
2;eff ¼

RG
2 þ RE

2 þ kEX

2
� Ncyc

Trel
cosh�1ðv1cÞ ð49Þ

where the following identity is used to simplify the trigonometric
terms [2,42,43]:

cosh�1ðF0 coshðE0Þ�F2 cosðjE2jÞÞ ¼ logððF0cosh2ðE0Þ
�F2 cos2ðjE2jÞÞ1=2

þðF0sinh2ðE0Þ�F2 sin2ðjE2jÞÞ
1=2
Þ

The only difference between the precise form described in reference
[6] and Eq. (49) is that their free precession delay scp is effectively
MG experiments in the case of two site chemical exchange, J. Magn. Reson.
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four times longer. Nevertheless, there are clear similarities between
Eqs. (48) and (49), and so the new expression can be expressed as a
linear correction to the Carver Richards result, requiring the defini-
tions in Eq. (45):

R2;eff ¼ RCR
2;eff �

1
Trel

ln
1þ y

2
þ 1� y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1c � 1
q ðv2 þ 2pDkGEÞ

0
B@

1
CA ð50Þ

The correction factor is exactly equal to the deviations between
the numerical result and the Carver Richards equation described in
Fig. 1, to double floating point precision. It is interesting to consider
the region of validity of the Carver Richards result. The two results
are equal when the correction is zero, which is true when:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
1c � 1

q
� v2 þ 2pDkGE ð51Þ

This occurs when kGEpD tends to zero, and so v2 = v3. The term pD

is based on the product of the off diagonal elements in the CPMG
propagator (Supplementary Section 3). Setting KGEPD to zero
amounts to neglecting magnetisation that starts on the ground
state ensemble and end on the excited state ensemble and vice
versa. This will be a good approximation when PG� PE. In practice,
significant deviations from the Carver Richards equation can be
incurred if PE > 1% (Fig. 1). Incorporation of the correction term into
Eq. (50), summarised in Appendix A, results in an improved
description of the CPMG experiment over the Carver Richards
equation.

4. Determination of R‘
2

It is interesting to calculate the effective relaxation rate at high
pulsing frequencies. As proven in Supplementary Section 6, in this
limit:

R12;eff ¼
RG

2 þRE
2þkEXð1�TÞ

2

� 1
Trel

ln
1

2T
ð1þe�TrelkEX TÞ Tþ tanh

TrelkEXT
2

� �
1þDR2

kEX

� �� �� �
ð52Þ

where

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðPG � PEÞDR=kEX þ ðDR=kEXÞ2 þ 1

q
ð53Þ

The logarithmic term in Eq. (52) accounts for the duration of the
CPMG element. Intuitively, if the duration is less than the timescale
of exchange, then additional contributions to the effective relaxa-
tion rate will necessarily appear, accounted for by this term. Corre-
spondingly, in the limit TrelkEXT� 1 the logarithmic term is

negligible. Going further, in the limit 1� 4PEDR2kEXðkEX þ DR2Þ�2

(see Supplementary Section 6), true if PE is small, or if either
kEX� DR2 or DR2� kEX, Eq. (53) can be further simplified, leading
to a modified version of Eq. (52):

R12 ¼ RG
2 þ

PEDR2

1þ DR2=kEX
ð54Þ

Which is identical to the relaxation rate expected for the R1q exper-
iment in the strong field limit (Ref. [44], x1� dG, dE, kEX, DR2,
Eqs. (5)–(8)). Thus the fast pulsing limit of the CPMG experiment,
and the strong field limit of the R1q experiment lead to identical
relaxation rates, as would be expected. Eq. (54) is similar, but not
identical to similarly reported results [2,6]. Going further, when
kEX� DR2 > 0, both the CPMG and R1q (in the strong field limit)
experiments converge on the intuitive population averaged relaxa-
tion rate [42]:
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lim
PE!0

kex>DR2

R12 ¼ PGRG
2 þ PERE

2 ð55Þ

Finally, in the limit DR2 = 0, the CPMG propagator (Eq. (46)) in
the limit of fast pulsing (Eq. (80) using the results in Supplemen-
tary Section 1) becomes:

M1
DR2¼0 ¼ e�TrelR

G
2

PG PG

PE PE

� �
ð56Þ

Which is identical to the evolution matrix for free precession in the
limit of fast exchange (Eq. (17) and using the results in Supplemen-
tary Section 1). High pulse frequency CPMG experiments only act to
make the system appear to be formally in fast exchange limit when
DR2 = 0.

5. The CPMG experiment as a series expansion

Physical insight into the CPMG experiment is obtained by con-
sidering the overall propagator for the CPMG experiment (Eq. (42)),
raised to the power Ncyc.

M ¼ e�2scpNcycð2RG
2þf R

00þf R
11Þ ðF0escpE0 � F2escpE2 ÞB00

N

�

þðF0e�scpE0 � F2e�scpE2 ÞB11

N
þ ðe�scpE1 � escpE1 ÞB01

N

�Ncyc

ð57Þ

The CPMG experiment can be considered in terms of a series
expansion. The propagator initially contains six unequally
weighted evolution frequencies, ±E0, ±E1 and ±E2, where the cofac-
tors are the product of an Fx (x = 0,2) constant, (Eq. (36)), and a Bxx

(xx = 00,11,01) matrix (Eqs. (18) and (40)). Raising these terms to
the power Ncyc will result in new terms that can be represented
in terms of sums and differences of the six frequencies, and
weighting coefficients. Temporarily ignoring the coefficients, the
frequencies that can be involved in the expansion can be revealed
using Eq. (41), noting that e0 is real and e1 is imaginary:

ðetcp2�0 þ etcp2�1 þ e�tcp2�0 þ e�tcp2�1 þ e�tcpð�0þ�1Þ þ etcpð�0þ�1ÞÞNcyc

¼ ðetcpð�0þ�1Þ þ e�tcpð�0þ�1ÞÞNcyc ðetcpð�0��1Þ þ 1þ e�tcpð�0��1ÞÞNcyc ð58Þ

The expansion results therefore in the product of a binomial
expansion over scp(e0 + e1), and a trinomial expansion over
scp(e0 � e1). The expansion in Eq. (57) will therefore result in
3Ncyc2Ncyc individual terms, arranged over (1 + Ncyc)(1 + 2Ncyc)
possible frequencies (Fig. 4A). Including the average relaxation rate
factor at the front of Eq. (57), 2scpNcyc(f 00

R + f 11
R ), the real part of the

frequencies will fall between 4Ncycscpf 00
R and 4Ncycscpf 11

R , or Trelf00
R

to Trelf11
R. These two real limiting frequency values correspond to

magnetisation that stays in either the ground state, or excited state
for the duration of the CPMG experiment. Similarly, the imaginary
component varies from �2scpNcyce1 to 2scpNcyce1, which can be
expressed as ±Trel(f 00

I � f 11
I )/2. The two imaginary limiting values

correspond to magnetisation that ‘swaps’ ensembles after each
180� pulse, spending equal time in the ground and excited state
ensembles. The imaginary limiting values correspond to the least
refocused magnetisation. All four frequency limits are proportional
to Trel. This provides a strong justification for performing constant
time CPMG experiments, as this means that the relaxation for each
term, and the maximum phase that any one term can accrue will
be constant for all values of Ncyc. The complete set of discrete fre-
quencies that can potentially contribute to the signal intensity,
parameterised in terms of the indices j and k:

Fk;j ¼
k� 2jþ 1

Ncyc

� �
f R
11 � f R

00

� �
þ 2 f R

00 þ f R
11

� ��

þi
�k� 2jþ 3

Ncyc
þ 2

� �
f I
00 � f I

11

� �� Trel

4
ð59Þ
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Fig. 4. The CPMG experiment in terms of the evolution of discrete frequencies. The following are simulated with the following exchange parameters: Dx = 1 ppm, Lamor
frequency 200 MHz, kEG = 400 s�1, kGE = 5 s�1, PE = 1.2%, R2

G = 10 s�1, R2
E = 50 s�1 Trel = 20 ms, Ncyc = 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, corresponding to vCPMG frequencies in the

range 50 Hz to 1 kHz. (A) Continued from Fig. 3B, as the number of CPMG elements increases, so too does the number of discrete frequencies. In a constant time CPMG
experiment, the range the frequencies at the end of the experiment is the same for all values of Ncyc. The spectral resolution, the density of individual observed frequencies,
therefore, increases with increasing Ncyc. Due to the combinatorial nature of the way the individual frequencies emerge, the number of pathways that lead to a given
frequency, v, increases massively with increasing Ncyc, leading to a large combinatorial weighting favouring central terms. (B) Each frequency has a unique weighting. The
effective weighting constant, neglecting relaxation (Eq. (63)/exp(F(k, j)), is shown for each frequency for the given exchange parameters. The combinatorial factor v acts to
overcome initially low weighting coefficients, increasing the probability that the central terms will contribute to signal intensity at high values of Ncyc. (C) In order to calculate
the individual contribution of each frequency to the final signal (Eq. (63)), the weighting coefficient in B must be multiplied by the appropriate relaxation rate (exp(position-
on-the-y-axis)). As higher values of y have significantly higher relaxation rates, terms with large weighting coefficients in B end up presenting only a small contribution to the
overall signal intensity. (D) Taken together, the number of terms whose magnitude is greater than 1% (Eq. (63)) increases with Ncyc. (E) The total intensity of the observed
resonance, as obtained by summing over all terms in C. (F) The corresponding relaxation dispersion curve, as typically measured in a CPMG experiment, where intensities are
converted to a relaxation rate using Eq. (1).
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with the index k running from 1 to 1 + 2Ncyc describing the trino-
mial expansion in e0 � e1, and j running from 1 to 1 + Ncyc describing
the binomial expansion in e0 + e1. The geometric distribution of
these the real and imaginary components of these frequencies is
illustrated in Figs. 3B and 4A, where the real component has
been normalised by a factor of f 11

R Trel, and the imaginary terms by
(f 00

I � f 11
I )Trel. Using these normalisations, the range of frequencies

are independent on Ncyc and take the form of a diamond with limits
in the imaginary dimension of (�0.5,0.5) and in the real dimension
of (f 00

R /f 11
R ) to 1. As f 00

R � f 11
R , on this scale the first term appears to
Please cite this article in press as: A.J. Baldwin, An exact solution for R2,eff in CP
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be very close to zero, and the terms ‘higher’ up the diamond on the
real axis have significantly larger relaxation rates. In the constant
time CPMG experiment, the range of the resolvable frequencies is
identical. The spectral resolution is limited by the density of
frequencies which increases substantially with increasing Ncyc

(Fig. 4A).
The simultaneous binomial and trinomial expansions result in

there being many different pathways that can lead to the same
final net evolution frequency. The total number of individual path-
ways that will contribute at each frequency is given by the product
MG experiments in the case of two site chemical exchange, J. Magn. Reson.
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of the coefficients of the two series, written here in terms of the
Gamma function, a generalisation of the factorial, Cðxþ 1Þ ¼ x!:

vk;j ¼ vbi
k;jv

tri
k;j

¼ Cðnþ 1Þ
Cðn� kþ 1ÞCðkþ 1Þ

� � Xn

j¼0

Cðnþ 1Þ
Cðjþ kþ 1ÞCðn� 2j� kþ 1Þ

 !

ð60Þ
The degeneracies of each frequency are strongly dependent on

Ncyc. Initially, each of the six frequencies has equal degeneracy
(Ncyc = 1, Fig. 3B). At successively higher values of Ncyc, there exists
a strong combinatorial preference for terms to converge on the
central frequency (Fig. 4A). This combinatorial factor effectively
describes the additional mixing between ground and excited
ensembles that occur at increased mCPMG. It is important to note
however that the frequencies emerging from the CPMG block are
not equally weighted, and using Eq. (59), the CPMG propagator
can be expressed as follows:

M ¼ e�TrelR
G
2

X1þ2Ncyc

k¼1

X1þNcyc

j¼1

Bk;j expðFk;jÞ ð61Þ

where

Bk;j ¼
Xvk;j

a¼1

YNcyc

b¼1

FxByy

N
ð62Þ

with x equal to 0, 1 or 2, and yy can equal either 00, 11 or 01
depending on the history of each term. Each term will be a product
of Ncyc individual FxByy factors, and the sum is over all terms with
the same frequency, Fkj. As the matrix multiplication depends on
the order with which the matrices are multiplied, these factors
are evaluated numerically in what follows. Neglecting chemical
exchange during signal acquisition (Supplementary Section 7), the
overall ground state signal intensity obtained after a CPMG experi-
ment will be given by Eq. (8). Using a combination of Eqs. (8) and
(61) the individual contribution of each frequency at a given k
and j, to the overall signal of the observed ground state resonance
can be calculated from:

Skj ¼
Ikj

Ið0Þ ¼ Bkjð0;0Þ þ Bkjð0;1Þ
PE

PG

� �
eFkj ð63Þ

The individual term coefficients are shown in Fig. 4B for the
given exchange parameters, temporarily neglecting relaxation
effects from the exponential term exp(Fkj).

At higher pulsing frequencies therefore, the combinatorial fac-
tors inherent to the experiment considerably increase the influence
of frequencies that correspond to mixtures of ground and excited
state ensembles (Fig. 4A). When the relaxation inherent in the
exponential term is included, the contribution from the terms that
have spent more time on the excited state is heavily attenuated, as
f 11

R � f 00
R (Fig. 4C, terms higher up the y-axis). Nevertheless, as

more frequency terms contribute to the signal (Fig. 4C and D),
and the observed intensity increases (Fig. 4E) leading to the
characteristic form of the CPMG curve (Fig. 4F). In summary, the
combinatorial factors associated with pathway degeneracy
(Fig. 4A) tend to favour these terms as the fast pulsing limit is
approached. This leads to magnetisation that would effectively
have otherwise have decayed away to nothing in the low pulsing
frequency, to instead be converted to observable signal (Fig. 4E
and F). As a consequence, faster pulsing leads to greater signal
intensity over the same constant time.

It is common to describe the action of the CPMG experiment in
terms of its ability to refocus magnetisation. Here it is shown that
this is an incomplete physical description. The CPMG experiment
does tend to refocus chemical shift as expected, but it is only
Please cite this article in press as: A.J. Baldwin, An exact solution for R2,eff in CPM
(2014), http://dx.doi.org/10.1016/j.jmr.2014.02.023
refocused magnetisation that spends the majority of its time in
the ground state mixed ensemble (associated with the frequency
f00) that relaxes sufficiently slowly to contribute significantly to
the observed signal. At low pulsing frequencies, only magnetisa-
tion that remains with the ground state ensemble contributes sig-
nificantly to signal intensity. By contrast, at higher pulsing
frequencies, the ground and excited mixed-state ensembles are
interconverted, enabling new pathways for magnetisation to fol-
low. A number of these pathways are associated with spending
only a relatively small amount of time on the excited state.
Magnetisation that passes down these pathways is consequently
sufficiently long lived that it can contribute to the observed signal,
rather than relaxing away to nothing. It is this slowly relaxing
magnetisation that can lead to the increase in signal intensity that
is characteristic of a CPMG relaxation dispersion experiment.
Quantitative analysis of the variance of signal intensity with CPMG
pulsing frequency can therefore then yield insights into the chem-
ical process that underlies the exchange in the system under study.
6. Conclusion

An exact solution describing how the effective transverse relax-
ation rate varies as a function of CPMG pulse frequency is pre-
sented (Eq. (50), summarised in Appendix A). This expression
takes the form of a linear correction to the widely used Carver
Richards equation [6]. Expressions are provided that take into
account exchange during signal detection (Eqs. (90) and (91))
[41], enabling an improved theoretical description of the CPMG
experiment suitable for data analysis. The formula provides a ca.
130� speed up in calculation of CPMG data over numerical
approaches, and is both faster and requires a lower level of preci-
sion to provide exact results than already existing approaches
(Supplementary Section 8). Freely downloadable versions in C
and python are available for download as described in Appendix
A. As this expression is exactly differentiable it has the potential
to greatly speed up fitting to experimental data. It is important
to note that effects of off resonance [40] and finite time 180� pulses
[39] will lead to deviations from ideality [25,28]. Moreover, addi-
tional spin-physics such as scalar coupling and differential relaxa-
tion are neglected in this approach. In the case of experiments
where in-phase magnetisation is created, heteronuclear decou-
pling is applied during the CPMG period [25,28], and CPMG pulses
are applied on-resonance, the formula will be in closest agreement
with experimental data. All of these additional effects are readily
incorporated into a numerical approach [32], which will give the
most complete description of the experiment. The formula retains
value however in offering both the potential to provide fast initial
estimates for such algorithms, and in providing insight into the
physical principles behind the experiment.

Acknowledgments

AJB thanks the BBSRC for a David Phillip’s fellowship, Pembroke
College and Peter Hore for useful discussions, Nikolai Skrynnikov
for both useful discussion and sharing code [37] and the Kay group.
Ongwanada provided a highly stimulating environment. Thanks to
Troels Emtekær Linnet for proof reading. An implementation of this
model is available in the program relax (www.nmr-relax.com).
Appendix A. Recipe for exact calculation of R2,eff
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R2E, R2G, Dx, kex and PE, Ncyc and Trel. An implementation of the
result written in python can be downloaded from http://baldwinlab.
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(i) Establish the complex free precession Eigenfrequency
h1 ¼ 2DxðDR2 þ kEG � kGEÞ
h2 ¼ ð2DR2 þ kEG � kGEÞ2 þ 4kEGkGE � Dx2

f00 ¼ 1
2 ðDR2 þ kEX � h3Þ þ i

2 ðDx� h4Þ

h3 ¼ 1ffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

1 þ h2
2

qr

h4 ¼ 1ffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

1 þ h2
2

qr
The ground state ensemble evolution frequency f00 expressed in separated real and
imaginary components, in terms of definitions h1–4. (Eqs. (11)–(14)). DR2 = R2E � R2G

(ii) Define substitutions for ‘stay’ and ‘swap’ factors
N ¼ h3 þ ih4
NN� ¼ h2

3 þ h2
4

Weighting factors for frequencies (E0–2) emerging from a single CPMG block, F0–2.
(Eqs. (36), (38), and (41)).

F0 ¼ ðDx2 þ h2
3Þ=NN�

F2 ¼ ðDx2 � h2
4Þ=NN�

Fb
1 ¼ ðh4 þ DxÞðDx� ih3Þ=NN�

E0 ¼ 2h3
jE2j ¼ 2h4
E1 ¼ h3 � ih4

(iii) The Carver Richard’s result (Eq. (49))
v1c ¼ F0 coshðscpE0Þ � F2 cosðscpjE2jÞ RCR

2;eff ¼
RG

2þRE
2þkEX
2 � Ncyc

Trel
cosh�1ðv1cÞ

(iv) Final result
v1s ¼ F0 sinhðscpE0Þ � iF2 sinðscpjE2jÞ
v4 ¼ �2ðkGE � f00ÞFb

1 þ kGEð2Dx2 � ih1Þ=NN�

v5 ¼ ðDR2 þ kEX þ iDxÞv1s � 2v4 sinhðscpE1Þ
y ¼ v1c�ðv2

1c�1Þ1=2

v1cþðv2
1c�1Þ1=2

� �Ncyc

R2;eff ¼ RCR
2;eff � 1

Trel
ln 1þy

2 þ
ð1�yÞv5

2N
ffiffiffiffiffiffiffiffiffiffi
v2

1c�1
p

� �
Four identities to assist efficient matrix exponentiation optimised for numerical
calculation, and the final result. Modified from Eqs. (45) and (50)
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jmr.2014.02.023.
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