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Supplementary Section 1 — The evolution frequencies in the fast and slow exchange limits

In both the fast and slow exchange limits, h,>>h;. This enables us to simplify h; and h; and obtain
expressions for the real and imaginary parts of the free precession frequencies. When using the
series expansion (1+x)"=1+nx, care must be taken to note the magnitude of the larger component,

h,. Limiting expressions for hz and h,; can be obtained from:

2
h —i\/J_rh2+Ihzl+h—1

2 21h,|
Where + corresponds to h; and — corresponds to h,. Defining:
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Enables us to recast h; and h;:
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And so h{‘”’ = zlz and hzsl”w =—A®?>. In the limit AR,=0, h/*'=z,’=ke,’ and h;=2Awkey’(Ps-Pg). Taking

care with the sign of h,, which changes between the fast and slow limits:
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A general definition for fast and slow exchange when AR!=0 is z;>>Aw, and Aw>>z; respectively.

Applying this definition leads to the following limits, with AR,/=0 (left) and AR,=0 (right):
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These expressions can be used to obtain limiting values for the free precession frequencies when
used in conjunction with equation (14). The exchange-induced shift of the ground state due to
chemical exchange for example is given by Aw-h,. In the fast exchange limit when kg>>AR, this is

equal to AwPe.

Supplementary Section 2. Diagonalising an idempotent product of matricies

A diagonal matrix C is sought such that
A-B=C-B

If the matrices are expanded in terms of their coefficients:

a a b b C 0
00 01 00 01 00
A = ’B = ’C =
alO all blO bll 0 Cll

Then the original equality can be expressed:

Aooboo + o by Gooby; + ag by _ Cooboo oo

aobyy +ay by, aby, +a,by, by cby,

Leading to definitions of the two diagonal coefficients for C:

Cop =ay +a, —blo—a +a by
00 — Aoo T Yy = Uy T Ay
00 by,
(66)
by by,
Cp =ay; T ay =a,ta,,—
by by,

It is possible to perform this operation when by,b,, = b,,b,,, as is the case for matrices By, and By;.

Supplementary Section 3. Raising a matrix to a power

A matrix P can be taken to an arbitrary power if it is first diagonalised it and then:

N N r-1

Where P; is the diagonal matrix of Eigenvalues and J is the matrix of eigenvectors. Using the

following identities, noting that p(i,j) gives the ith row and the jth column of P:



= P(0,0)+ P(1,1)
= P(0,0)-P(1,1)
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= (v} +4P(0,1)P(1,0)) (68)
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Yielding the following:
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Supplementary Section 4. Relation to Carver Richards equation

(pn?

The Carver Richards equation uses several identities (the ‘A’ refers to references in the original
work). These are directly related to identities used in this work, which are explicitly re-defined here.

The Carver Richards equation is precisely correct if their definition of t,, is four times the value that

used in this paper ®:
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These gives the following expression for R .

RCR _Rf+Rf+kEX_ 1

>l 2 4z,

cosh™ (D, cosh& — D_cosn) (71)

Our derivation enables physical meaning to be assigned to these constants. £ and n are differences
of the real and imaginary components of the free precession frequencies fo and f;; (equation (41)),
D, and D. are the stay/stay (F,), and swap/swap (F,) coefficients (equation (36)) and { and ¢ are
parameters that enable the free precession frequencies to be written in a more concise form
(equation (12)). Note that in reference 2, in equation 25, the definition used for Tp is twice that used

in this work but is otherwise identical.

Supplementary Section 5. Derivation of v;*=v,’-1

Noting the definitions in equation (45), as a starting point, v; can be expanded:

V§ = V? + 4kEGkGEp12) (72)
Which can be expanded to reveal:

v} = A/N’(F,sinh(t E,)— F, sinh(z,,E, ))2 +B/N’sinh’*(t,_E,) (73)
Where:

A= (OE _OG)2 +4kgpkyg = N?

B=4((F + B )keghos +4(0,F") | =—4F,FN° 7
A term of the form Csinh(7  E, )(FO sinh(7_,E,) - F, Sinh(‘L'CpEz)) also appears, although:

C =8(0; = 05)0,F = 8kyokep (F'+F')=0 (75)
Combining equations (73) and (74):

v =(F,sin(z, E,)~ F,sinh(z, E,)) —4F,F,sinh(z, E,? (76)



By noting that sinh(z, E,)* = (cosh(t,, (E, - E,))—1)/2,
cosh xcosh y+sinh xsinh y = cosh(x+ y), sin’ x+cos’x=1, cosh’ x—sinh’*x =1,
sinh(ix) =isin(x), cosh(ix)=cos(x) and F,—F, =1, the following identity can be proven:
(Fysin(z, )~ Fysinh(z,, E,))” —4F,F,sinh(z, E, > = (F, cosh(z,, E,) ~ F, cosh(z, E,)) ~1
From which it follows that:

v§ = vfc -1 (77)

Equation (50) is therefore is exact, and is accurate as the assumptions that lead to its derivation.

Note that this derivation is equivalent to proving 4P(0,0)P(1,1)-1=P(0,1)P(1,0) from equation (42).

Supplementary Section 6. Determination of R, «

When N, becomes large, the limit of small t,, both cosh(t,x) and cos(t.,x) tend to 1+(rc,,x)2/2, and

the terms in sinh(t.,x) and sin(tx) tend to t.x, and pp=21,,. Defining:
N, Noye
viz(vl+v3) K i(v,—v3) (78)
And noting that at high N, 1>>v;>>v; and noting that (1+a/x)* tends to exp(a) as x tends to infinity:

v, = exp(NCyC (vl - 1))(exp(NCycv3) * exp(—Ncycv3 ))

(79)
Consequently, the propagator for the CPMG element from equation (46) can be written:
1 Y 2T kpov_
= v, +2= pEG
2 Vv, Vv,
“—C (80)
27 kgpv_ 1 L
vy 207 v,
Noting that v. can be expressed in terms of hyperbolic trigonometric functions:
1 v 2tk
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Leading to a cumbersome, but exact expression for R,

RC+RE+ N, 1 1 N v,+4t_k, P
R, =—"—2 Ko Mo (v, —14v,)——1In —(1+62N""“3) 1+tanh(N ,vg) RERLAE 2 S
€] 2 T 3 2 cyc? 3 V3 (82)

rel rel

By first defining AR,*“*=AR,/kex and:

T = \2(P, — P,)AR + (AR ) +1 (83)
Some algebra reveals that:

vy =2k, (PG —-P,+ AR;‘)

vy =2kt T

(84)

Which when substituted into equation (82) gives an exact expression for R, "Ny

R} +R) +ky(1-T) 1 1 T kT AR
Ry = : 2+ K )——ln _(1+67T'"’kEXT) T+tanh(ﬂ) 1+—2

rel EX

The logarithmic term can be neglected only when T,.k:xT>>1. An interesting limit is if the square of T

is completed from equation (83):

4p, AR

(1var] .

T=(1+AR) [1-

And expand in the limit 1>>4P_ ARk, (kEX + AR, )_2 , true if either P¢ is small or if either kex>>AR,

or kex<<AR;, keeping only leading terms:

kex kex
2pEAR2 — 1+ ARkex _ 2pEAR2

Tz(1+AR§ex) 1_(1+AR;‘€")2 > T LH AR

(87)

Substituting this into (85), in the limit where T,.kexT>>1 leads to equation (54)

Supplementary Section 7. Correction for exchange during indirect evolution periods
If effects of chemical shift during signal detection are neglected then equation (8) can be used to
calculate R, 4. The description of the experiment can be improved by taking into account effects of

exchange during the indirect detection period, following the lead of Hansen et al **. If the CPMG



element is followed immediately by indirect evolution of time t;, then as the two states will continue

to exchange during acquisition, the observed signal will be given by:

P
I(t):O(tl)M(Tcp)( PG ] (88)

By contrast, if the indirect dimension precedes the CPMG element then:

P
I(t):M(GC)O(tl)( PG ] (89)

In the former case:

1,T,) (M©.0)P,+M©O.DP,) (0, ~k,)+(M1OP, + MADP,)(0, - k,)

(90)
1,(0) P, (05 —k, )+ P (0, ~k,)
And in the latter case:
1,T,) (M0,0)+M(1,0)(P,0,+ Pk, )+(M©.D)+MA1D) (PO, +Pik,,) o1

1,(0) (P,O, + Pok,, )+ (PO, + Pk, )

The two are not equivalent. Using these expressions in conjunction with M (equation (46)), and

equation (1) will lead to an improved theoretical description of the experiment.



Supplementary Section 8. Comparison to existing algorithms
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A computer derived algorithm that amounts to an exact solution for R,.; has been described
previously *’. An implementation of this algorithm calculated at double floating point precision in
MATLAB was found to result in erroneous values of R,.gunder certain combinations of parameters.
This was revealed by calculating the error function as shown in the above figure, and working out its
maximum value over an extensive array of the parameters: Aw (0.1 to 10,000 ppm at a Lamor
frequency of 200 MHz), ke(1 to 10,000 s™), pe (0.001 to 40%). At double floating point precision,
corresponding to an accuracy of approximately 9 decimal places, the maximum error was significant,
on the order of 100 s™ (A, black). When the precision of the calculation was increased to 23 decimal
places and beyond, the algorithm was found to give a result in agreement with both the numerical
treatment, and equation 50 (A, red). To determine for which regions of parameter space the errors
were incurred when using double floating-point precision, the errors were projected on Aw (B).
Numerical instabilities were found to affect results for Aw values above approximately 10 ppm at
200MHz Lamor frequency (corresponding to 2.1ppm at 950 MHz) in a relatively unpredictable
fashion. To compare the two approaches further, an implementation in C was produced containing
both this algorithm®’ computed at long double precision (18 decimal places, leading to a maximum
error on the order of 10* s™, A) and equation 50 evaluated at double floating point precision. The
implementation of equation 50 resulted in a more compact algorithm (23 lines versus 78 lines) and
was found to run approximately 12x faster on an i7 processor (code available on request).
Algorithms based on equation 50 (appendix 1) can be considered exact when evaluated at double

floating point precision, as used in common languages such as MATLAB and python.



