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SUMMARY

Ion mobility mass spectrometry (IM-MS) allows the
structural interrogation of biomolecules by reporting
their collision cross sections (CCSs). The major
bottleneck for exploiting IM-MS in structural prote-
omics lies in the lack of speed at which structures
and models can be related to experimental data.
Here we present IMPACT (Ion Mobility Projection
Approximation Calculation Tool), which overcomes
these twin challenges, providing accurate CCSs up
to 106 times faster than alternative methods. This
allows us to assess the CCS space presented by
the entire structural proteome, interrogate ensem-
bles of protein conformers, and monitor molecular
dynamics trajectories. Our data demonstrate that
the CCS is a highly informative parameter and that
IM-MS is of considerable practical value to structural
biologists.

INTRODUCTION

The function of proteins, and the multi-component complexes

they assemble into, is directly related to the structures they

adopt and the motions that facilitate their inter-conversion (Rob-

inson et al., 2007; Russel et al., 2009). The twin fields of structural

biology and structural genomics have met with considerable

success over the last two decades, however many significant

structures remain elusive and the conformational heterogeneity

important for function remains challenging to access experimen-

tally (Ward et al., 2013). Ion mobility mass spectrometry (IM-MS)

provides a means to complement and integrate with existing

methodologies, providing information on the stoichiometry and

physical size of protein assemblies, and the distribution of con-

formations they adopt (Konijnenberg et al., 2013; Sharon,

2013; Stengel et al., 2012; Thalassinos et al., 2013; Zhou and

Robinson, 2014).

IM-MS reports the collision cross section (CCS) of ions by

measuring the time taken for them to traverse a region of inert

gas under the influence of a weak electric field (Bohrer et al.,

2008; Ruotolo et al., 2008). For globular protein assemblies at

least, there is an excellent correlation, with an error <3%, be-

tween the CCSs of protein assemblies measured experimentally

using travelling-wave or drift-tube IM-MS instruments, and those

estimated from their high-resolution atomic coordinates (Ben-

esch and Ruotolo, 2011). While this observation motivates the
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use of IM-MS for interrogating the structure of protein assem-

blies, a significant bottleneck in the analysis process is imposed

by the challenges involved in calculating reliable CCS values

from atomic coordinates. For IM-MS to have a significant impact

on integrative structural biology calculations, it is necessary to

be able to routinely determine CCS values of >106 models,

with molecular masses typically in the >100 kDa range (Baldwin

et al., 2011; Laganowsky et al., 2014). Unfortunately, current

computational approaches are not adequate for this task, dras-

tically limiting the scope of IM-MS.

A number of CCS calculation algorithms are available, each

developed for particular applications and molecular size

ranges (Jurneczko and Barran, 2011; Uetrecht et al., 2010). In

the main, these algorithms are Monte Carlo integrations in

which ‘‘probes’’, representing the IM gas, are ‘‘fired’’ upon the

randomly oriented ‘‘target’’, the structure under investigation.

The various algorithms differ in the assumptions and approxima-

tions made in modelling the collisions between probe and target.

Themost complex are the trajectorymethod (TJM) (Mesleh et al.,

1996) and the diffuse trajectory method (DTM) (Larriba and

Hogan, 2013), which take into account long-range interactions

through, for example, Lennard-Jones potentials, to approximate

the momentum transferred from each incident probe to the

target. Although some deviation from experimental values is

observed (Hewitt et al., 2014; Jurneczko and Barran, 2011),

these methods are typically considered to provide the best

CCS estimates (Bleiholder et al., 2011). However, both the

TJM and DTM require the integration of forces in order to calcu-

late the probes’ trajectories, making them very computationally

expensive. The introduction of various additional approxima-

tions has led to the exact hard-sphere scattering (EHSS)

(Shvartsburg and Jarrold, 1996) and projected superposition

approximation (PSA) (Bleiholder et al., 2011) methods, both of

which are significantly faster than the TJM and DTM.

The projection approximation (PA) is the simplest approach

of all, equating the CCS to the average projected area of the

target (Mack, 1925), taking into account the size of the IM gas

(Figure 1A) (von Helden et al., 1993). Because the PA ignores

scattering and long-range interactions, the calculation is fast

but also leads to a systematic underestimation of the CCS (Blei-

holder et al., 2011; Jurneczko and Barran, 2011; Larriba and Ho-

gan, 2013). However, for macromolecules, comparison between

the PA and TJM reveal an excellent correlation, with the fitted

values matching the TJM data to within <2% (Bleiholder et al.,

2011). These observations demonstrate that the approximations

made by the PA approach are not a significant drawback when

examining larger targets such as proteins and their assemblies,

allowing us to exploit its simplicity for application to structural

proteomics.
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Figure 1. An Accurate CCS Calculator

(A) The PA approximates the CCS as the rotationally averaged projected area

of the target molecule, adjusted for the finite radii of the IM gas probes. The

molecule is rotated randomly many times during the calculations to sample

rotational space and the average projected area is determined through Monte

Carlo integration.

(B) Comparing the CCS reported from IMPACT with that obtained by the TJM

reveals an excellent correlation. The relative error for the 442 structures in the

benchmarking dataset is �1% (inset) and shows no correlation with mass.

Overall, the error is lower than the 3% inherent experimental uncertainty when

interpreting these values in structural biology applications.

See also Figure S1A.
Here we present IMPACT (Ion Mobility Projection Approxima-

tion Calculation Tool), an algorithm that has been written

specifically with structural proteomics applications in mind. To

accommodate the varying experiments that contribute to mod-

ern ‘‘hybrid’’ structural biology investigations, IMPACT is able

to include models derived from X-ray crystallography, nuclear

magnetic resonance (NMR) spectroscopy, small angle X-ray

scattering (SAXS), and electron microscopy (EM). We show

that IMPACT is able to calculate CCSs orders of magnitude
792 Structure 23, 791–799, April 7, 2015 ª2015 Elsevier Ltd All rights
more rapidly than previously possible, and that this is achieved

without a significant drop in accuracy. We demonstrate this dra-

matic enhancement in performance by calculating the CCSs of

all the proteins in the Protein Data Bank in Europe (PDBe) in

just a few hours on a single processor. The results enable us to

define a shape factor that reports on how similar a given struc-

ture is to others of similar mass, a measurement that will be use-

ful in the characterization of unknown protein assemblies, and as

a restraint in hybrid structure modelling. Furthermore, we calcu-

late the CCS distribution of a conformational ensemble of ubiq-

uitin and reveal that its distribution of values is in close agree-

ment with that measured experimentally. Finally, we show that

IMPACT is sufficiently fast for on-the-fly calculation of CCSs dur-

ing molecular dynamics (MD) simulations, providing information

complementary to the radius of gyration, revealing IMPACT to be

a useful addition to the molecular modelling toolbox. In sum, our

work will enable the application of IM-MS across the breadth of

structural biology and structural proteomics.

RESULTS

We formulated four principal requirements for a CCS calculator

tailored for structural biology: (1) be able to calculate CCS accu-

rately and to a well-defined precision; (2) have the capacity to

calculate the CCS of very large biomolecular assemblies; (3)

allow the processing of a variety of structural data and models;

and (4) do all of this rapidly, enabling routine analysis of large

sets of structures. Our solution, IMPACT, is a CCS calculator

written from scratch in the C programming language, which

can function both as a command-line tool and as a library to

facilitate integration with other computational structural biology

tools.

High Accuracy Collision Cross Section of Protein
Assemblies
As CCS calculations are typically based on a Monte Carlo

integration using random numbers, run-to-run variability is

expected, the magnitude of which we define as ‘‘precision’’. To

determine the statistical certainty of the result, it is crucial to

monitor the convergence of the calculations. We accomplish

this in IMPACT by interleaving multiple instances of the calcula-

tion (Williams et al., 2009) with a robust convergence criterion

based on the standard error of their mean (Supplemental Infor-

mation). We benchmarked IMPACT’s accuracy by comparing

it with the TJM, the method typically considered to be the

gold standard for CCS calculations, for a reference database

of 442 native protein structures spanning a range from 348 to

33,000 Å2 (Figure 1B; Supplemental Information). We find that

the CCSs (U) calculated using the two methods are highly corre-

lated across the entire range and show that using the power law

UTJM = 0:8433UIMPACT
1:05 to calibrate the IMPACT results in a

root mean square relative error of �1% between the two sets

of values (Figure 1B, inset; Table S1). Correcting for the finite

precision in the calculations (Supplemental Experimental Proce-

dures), we find that the remaining error, which defines the accu-

racy, is 0.95%. We have therefore selected 1% as the default

convergence level in IMPACT. Importantly, since the calculation

error is considerably smaller than the 3% precision by which

CCS values can be compared with solution structures (Benesch
reserved
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Figure 2. IMPACT Provides a Dramatic Increase in the Speed of CCS Calculations

(A) Schematic showing in 2D/3D how quadtrees/octrees are constructed for a target through recursive subdivision. A quadtree representation of a structure with

three atoms (yellow dots) is shown at depths 0�3, and the two first levels of an octree for the lac-repressor (PDB code 1EFA). The bounding boxes enclosing the

subdivisions at each level let us omit large parts of the target from the search for collisions with the probe, saving time in the process (see also Figures S2A–S2C).

(B) Computational wall time plotted against maximum octree depth D for a series of large macromolecular complexes (Table S2). Octrees provide the biggest

boost to speed for large targets, being almost a factor of 20 for the vault. IMPACT automatically determines the optimum octree depth in a calculation

(Figure S2D).

(C) Performance benchmarks, where the CCS of the asymmetric unit from a crystal structure of the Norwalk virus capsid (PDB code 1IHM) was calculated to 1%

precision, reveal that IMPACT outperforms other PA implementations and is approximately 106 times faster than TJM without significant loss in accuracy (see

Figure 1B).
and Ruotolo, 2011), IMPACT is equivalently accurate for struc-

tural biology applications as the TJM.

IMPACT Calculates Collision Cross Sections with
Unprecedented Speed
To achieve high computational performance, we implemented

two strategies. First, we separated the calculation of rotation

matrices fromtheir application to theatomiccoordinates (Supple-

mental Information) (Williams et al., 2009). In addition, we

implemented a strategy that pre-arranges atoms into cuboidal

subsections, each of which can in turn be further subdivided,

yielding a multilevel ‘‘octree’’ (Figure 2A; Figure S2) (Meagher,

1982), which is a type of data structure for accelerating geometric

modelling. For an incoming probe, IMPACT first assesses

whether or not it has collided with the bounding box of the outer

level of the octree. If so, the smaller boxes contained inside the

outer box are interrogated for collision with the probe, and so

on, until the deepest level where the atoms are stored is reached.

Theprobewill, inmostcases,onlyhit aminorityofboxes, enabling

a faster calculation as many atoms can be omitted from the

search for collisions. The process of subdivision adds overhead

to the calculation, however for assemblies [100 kDa (Table

S2) such as the ribosome (protein and nucleic acid, 2.4MDa), sat-

ellite tobacco necrosis virus (STNV; capsid, genome, salt, and

water; 1.8 MDa), the vault (3.5 MDa), and the adenovirus capsid

(89 MDa), we obtained an additional acceleration up to 20-fold

(Figure 2B; Supplemental Information). Importantly, the introduc-

tion of octrees does not result in a loss of accuracy, returning the
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sameCCS values as without. We find that there is a strong corre-

lation between the number of atoms and the optimal number

of subdivisions (maximum octree depth) (Figure S2D), which is

exploited by IMPACT at runtime for maximum performance.

To test the impact of these strategies we performed a bench-

mark between IMPACT and other available CCS calculators

(Supplemental Information), using the 170 kDa asymmetric unit

from the Norwalk virus capsid protein (PDB code 1IHM) to

compare with other studies (Bleiholder et al., 2011; Paizs,

2014). We find that to approach a precision of 1%, the TJM re-

quires 17 hr, and the EHSS 28 min. The time taken for the PA

varies between different implementations, with the fastest exist-

ing form converging in 0.43 s. By comparison, IMPACT requires

only 70 ms to reach completion. The speed improvement of

IMPACT is therefore substantial, ranging approximately between

one and six orders of magnitude compared with alternative CCS

calculators (Figure 2C). Notably, disk access constitutes approx-

imately 20% of IMPACT’s wall time for these calculations, indi-

cating that when data are supplied from a coordinate file, rather

than being available and properly formatted in random-access

memory, the performance of IMPACT is close to the unavoidable

limitations posed by the hardware.

The Structural Proteome Displays Significant Variation
in Collision Cross Section
The accuracy, precision, and speed of IMPACT allow us to inter-

rogate large structural datasets. We therefore set out to deter-

mine the CCS for all the biological assemblies in the PDBe
, 791–799, April 7, 2015 ª2015 Elsevier Ltd All rights reserved 793
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Figure 3. The Structural Proteome Displays Large Variations in CCS

(A) Histogram of CCS values of the 266,516 protein assemblies in the PDBe calculated using IMPACT. A clear trend can be seen that follows Ufit = 0.457m2/3 Å2

(black, determined from the curated PiQSi dataset, Figure S3), which follows the expected scaling law for CCSs.

(B) A slice through this histogram at 80–90 kDa shows the variation in CCS without most of the inherent mass dependence. The large variation reveals the

distinguishing power of IM-MS.

(C) The PDBe data expressed using shape factor u (upper panel) and the relative SD of u as a function of mass (lower panel). The variations that are observed

across the whole mass range are considerably greater than both the experimental error and instrument resolution, which are approximately 3% and 2%,

respectively, and reveal that the discriminatory power of the IM-MS approach increases with molecular mass.

See also Figure S3.
(Gutmanas et al., 2014), comprising >300,000 structure models,

a calculation that took �5 hr on a single processor (Supple-

mental Experimental Procedures). In order to obtain an unbiased

depiction, we reduced the repetition in this database by select-

ing only a single structure when several were available for the

same sequence, based on which was most likely according to

the PISA algorithm (Krissinel and Henrick, 2007). This resulted

in a curated subset of 266,516 structures, representing the entire

structural proteome for which atomic coordinates exist. We also

calculated the mass of these structures, based on summing the

mass of all residues present in the coordinate file, in order to

mitigate for unresolved regions of sequence.We find that, across

the PDBe, CCS is approximately proportional to mass to the po-

wer of two-thirds (m2/3) (Figure 3A). This is consistent with exper-

imental observations made for smaller datasets (Bush et al.,

2010; Kaddis et al., 2007; Ruotolo et al., 2008), and is a scaling

predicted for structures of any shape with a constant density.

Many proteins in the PDBe are redundant in the sense that

they are represented by several entries where there is range of

mutants or otherwise closely related structures. As this may

lead to bias in the trend of CCS versus mass, we also examined

the PiQSi database, a manually curated and nonredundant data-

base of 1,755 biological assembly structures (Levy, 2007). This

analysis of the PiQSi database also fits well to the CCS scaling

with m2/3 (Figure S3A), and allows us to confidently fit a relation

between CCS andmass for a typical protein, ofUFit = 0.457m2/3.

By approximating globular proteins as spheres, entailing

Usphere = pð3m=4prÞ2=3, effective gas-phase densities, reff, of

0.37 Da/Å3 (Bush et al., 2010; Kaddis et al., 2007; Ruotolo

et al., 2008) and 0.48 Da/Å3 (Bush et al., 2010; Kaddis et al.,

2007; Ruotolo et al., 2008) have been inferred from experimental

CCS. At face value, these appear inconsistent with the density of
794 Structure 23, 791–799, April 7, 2015 ª2015 Elsevier Ltd All rights
0.87 Da/Å3 reported from X-ray structures (Fischer et al., 2004).

With the CCSs of all proteins in the PDBe and PiQSi at our

disposal, we are in a position to assess whether this difference

arises from the assumption of spherical proteins (Supplemental

Information), or if the lower density reflects non-native conforma-

tions in the experiments. We find that CCSs for native protein

structures are consistently larger than what is expected for the

approximation of perfect spheres, and determine a reff of 0.33

Da/Å3 and 0.31 Da/Å3 for the structures in PDBe and PiQSi,

respectively (Figures S3B and S3C), consistent with earlier find-

ings. Since reff was obtained using native structures, our results

suggest that it is the simplistic assumption of spherical proteins

that is responsible for the apparent deviation from the solution-

phase density of proteins.

In addition to these general trends, the CCSs are distributed

around the fitted line for both PDBe and PiQSi. Examination of

the CCSs for proteins of similar mass in both the PDBe and PiQSi

by taking ‘‘slices’’ of data at different mass windows (e.g. 80–

90 kDa; Figure 3B) reveals that the deviation is larger than the

1% precision used in the CCS calculations. This suggests that,

providing the resolving power of the instrumentation is sufficient,

proteins of similar mass can often be separated with IM.

A Shape Factor Enables Facile Assessment of Unknown
Structures and the Shape Variations in the Proteome
In order to interrogate the variation in CCS more succinctly, we

decoupled the shape variations from the inherent scaling of

CCS with m2/3. Analogous to the Perrin friction factor (Perrin,

1936), we can quantify how the CCS of a given structure deviates

from the line fitted through the CCS distribution (Figure 3A;

Figure S3A) invoking a dimensionless shape factor uhU=Ufit.

This can be derived from any experimentally determined CCS
reserved
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Figure 4. Applying IMPACT to Diverse Structural Biology Approaches

(A) IMPACT can analyze coarse-grained representations, such as those generated from EM density maps or SAXS data, to give a CCS value for comparison with

other data. Calculating the CCS for the EMmap of GroEL (EMDataBank code 1457) as a function of represented volume (blue), reveals that the model matching

the volume expected from the mass of GroEL (dashed line) has a CCS very close to that of the X-ray structure (dotted line). Inset is such a bead representation of

GroEL, superimposed on the EM density map. Ab initio reconstructions of GroEL from SAXS data simulated from the X-ray structure were filtered to match a

range of volumes (black). The best match with the X-ray structure was found at a volume considerably in excess of that expected for GroEL, indicating that the

CCS holds information valuable for the processing of SAXS bead models.

(B) The peak from an experimentally derived IM-MS measurement of 7+ charge state of ubiquitin (yellow), which corresponds to native solution conformations

(Wyttenbach and Bowers, 2011), is broader than that expected for a single conformation (Koeniger et al., 2006) (black, scaled down to fit the y scale of the graph).

Traces calculated using IMPACT from two NMR-derived ensembles, 2KOX (blue, U= 1031 �A2) (Bryn Fenwick et al., 2011) and 2K39 (red, U= 1052 �A2) (Lange

et al., 2008) reveal that the former is in good agreement with the IM-MSmeasurement in terms of width, although both ensemblesmatch the experimental value of

�1000 Å2.

(C) The CCSwas calculated for a 15-nsMD trajectory of lysozyme in the gas phase every 10 ps using IMPACT, taking 1min, demonstrating the possibility of using

IMPACT for restraining MD simulations. (D) The radius of gyration, Rg
2, has previously been taken as a proxy for CCS (Chirot et al., 2012). For the trajectory in (C),

CCS and Rg were weakly correlated, revealing that they are sensitive to different molecular properties and are thus complementary quantities.
given the mass, which is itself an outcome of the IM-MS exper-

iment.u is equal to unity when a protein has structural character-

istics of an ‘‘average’’ protein at that given mass, <1 when a

protein is more compact, and >1 when it is more extended

than typical (e.g. high aspect ratio or containing a cavity). Similar

to other shape factors in the physical sciences, by enabling com-

parison to the average, u can therefore be used to provide gross

structural information on an unknown (Hewitt et al., 2014).

Examining u as a function of mass provides an overview of the

distribution of protein shapes in the PDBe (Figure 3C). In the

mass range <200 kDa, the distribution of u is centered close

to unity, increasing slightly with mass. In this same range, the

relative SD, sr, is �10%, indicating that there are considerable

structural variations between proteins of similar mass. Above

200 kDa, where PDBe data are sparser, u and sr both increase

markedly. Notably, the variation of 10% or more is significantly

in excess of the typical resolution (<2.5%) of modern IM-MS

instrumentation used in the study of protein assemblies (Zhong

et al., 2011) and discrepancy (<3%) between CCSmeasurement

and estimation (Benesch and Ruotolo, 2011). This indicates the

discriminatory ability of not just CCS as a structural quantity

but also the utility of current IM-MS experiments. These results

suggest that the shape factor is a suitable means to distinguish

between types of structure in known proteins, and potentially

useful for relating proteins of unknown structure to structural ho-

mologues in the PDBe.

Using Collision Cross Sections in Integrative Structural
Biology
Even though the CCS provides useful information about the

structure of a given protein, it is not sufficient for complete atom-
Structure 23
istic structure determination. Hence, IM-MS is most useful for

structural biology when combined with other structural data.

For IMPACT to be of wide practical utility, it is therefore important

that it can accept inputs from a variety of experimental sources.

Consequently we designed it such that the CCSs of coarse-

grained models, including those obtained from SAXS or EM

(Figure 4A), can be determined by allowing for custom atomic

radii to be read from a parameter file. To exemplify the utility of

this feature, we created bead models from an EM density map

of GroEL (EMDataBank code 1457) by placing beads at all voxels

that had an electron density above a specified threshold. By

repeating this procedure at different thresholds, we obtained

500 bead models varying in volume and calculated their CCSs

(Figure 4A). We find that the CCS increases with increasing vol-

ume and, when imposing a protein density of 0.87 Da/Å3 (Fischer

et al., 2004), the model with a volume corresponding to the mass

of GroEL (801 kDa, 943,000 Å3) gave a CCS that closely matched

the crystal structure (PDB code 1OEL) (Figure 4A). At larger

volumes, the CCS increased sharply, suggesting that CCS is

sensitive to artefacts resulting from overfilling of the EM map,

and might therefore be an effective alternative means for thresh-

olding EM data.

Ab initio bead models can also be constructed from SAXS

data, in a process that typically involves the pooling of several

separate simulations to form an average structure, and filtered

such that theymatch a specified target volume. Using the ATSAS

package (Svergun et al., 1995; Volkov and Svergun, 2003), we

generated 100 bead models from simulated SAXS data of

GroEL, using a range of different target volumes (Figure 4A).

We found that the CCSs calculated for the resulting models

increased approximately linearly with volume. Notably, the
, 791–799, April 7, 2015 ª2015 Elsevier Ltd All rights reserved 795



model that best matched the mass of GroEL had a CCS 17%

lower than the X-ray structure, whereas the model that best

matched the CCS of the X-ray structure gave a volume 75%

larger than expected. For the latter case, the large volume can

in part be attributed to cavities in GroEL being filled up by beads

(Figure 4A, inset), which has little impact on the CCS. The results

therefore indicate that CCS holds structural information that is

complementary to the SAXS data, and might therefore be used

to support ab initio modelling.

Enabling Collision Cross Sections for Assessment of
Structural Dynamics
IM-MS measurements record a snapshot of the structural

ensemble present in solution, thereby intrinsically reflecting not

just the predominantly populated state of the protein but alsomi-

nor conformers (Wyttenbach et al., 2014). The speed of IMPACT

allows us to analyze structural ensembles, collections of struc-

tures that aim to encompass all the conformers dynamically

populated at equilibrium. IM-MS measurements of protein and

protein complex ions reveal CCS distributions considerably

wider than the instrumental resolution (Koeniger et al., 2006;

Zhong et al., 2011). In addition, the widths of these distributions

are sensitive to experimental conditions that affect the confor-

mational flexibility in solution (Zhong et al., 2014; Zhou et al.,

2014). These observations indicate how IM-MS is sensitive to

the structural dynamics of proteins (Wyttenbach et al., 2014).

To investigate this quantitatively, we examined two protein en-

sembles generated from NMR spectroscopy data for the small

protein ubiquitin (PDB codes 2K39 (Lange et al., 2008) and

2KOX (Bryn Fenwick et al., 2011)). Calculating the CCS distribu-

tion of these ensembles reveals only a minor difference in

mean CCS between them (U2K39 = 1052 �A2, U2KOX = 1031 �A2),

and a close correspondence with that obtained from IM-MS

(UExpz1000 �A2) (Wyttenbach and Bowers, 2011). There is how-

ever significant variation in the width of the CCS distributions,

with 2K39 notably wider than the more recently refined 2KOX.

Comparison with experimental CCSs reveals much closer corre-

spondence with the latter. This demonstrates that our approach

can be used to enable the experimental quantification of

conformational heterogeneity and cross-validation of structural

ensembles.

The performance of IMPACT suggests that CCS values could

be calculated on the fly duringMD simulations without unduly re-

tarding their progress. To investigate this possibility we calcu-

lated the CCS for a short MD trajectory of lysozyme in the gas

phase (Marklund et al., 2009) every 10 ps (Figure 4C) to a preci-

sion of 0.5%. This single-core calculation for 1,500 structures

took 1 min. By comparison, the simulations had been run on

several processors for several weeks, confirming IMPACT’s abil-

ity to restrain MD simulations with IM-MS data. Because CCS

calculations have been a limiting factor, attempts to integrate

IM data into MD simulations have previously been done by

approximating the CCS to the squared radius of gyration, Rg
2,

which is more readily computed (Chirot et al., 2012). A plot of

Rg
2 versus CCS for the trajectory analyzed here reveals only a

weak correlation, R2 = 0.73 (R2 = 0.73 also for Rg versus CCS)

(Figure 4D). This indicates that the two parameters are not gener-

ally interchangeable as restraints. Together, these observations

demonstrate the potential for enabling the use of IM data to
796 Structure 23, 791–799, April 7, 2015 ª2015 Elsevier Ltd All rights
restrain MD simulations of macromolecules by CCS directly in

order to focus the sampling to conformations that comply with

experimental observations.

DISCUSSION

Recent methodological advances have enabled IM-MS mea-

surements to be made across a wide variety of proteins,

including some of the most challenging of biological assemblies

(Benesch and Ruotolo, 2011; Konijnenberg et al., 2013; Sharon,

2013; Stengel et al., 2012; Thalassinos et al., 2013; Zhou and

Robinson, 2014). It is well known that the conformations of

folded proteins and protein assemblies are well reflected in the

gas-phase ensemble obtained on the timescale of typical IM-

MS experiments (Breuker and McLafferty, 2008; Ruotolo and

Robinson, 2006). At first glance this may seem to conflict with

the seemingly low effective densities inferred from gas-phase

experiments. However, by analyzing all biological assemblies

in the PDBe and PiQSi, we were able to reproduce the experi-

mentally inferred gas-phase density of proteins, which shows

that the low apparent density can be explained as a direct conse-

quence of the simplistic way densities have been inferred from

CCS. As such, our analysis resolves this apparent inconsistency

with the effective gas-phase protein density being lower than the

density of crystal structures and shows that the reported results

are consistent with proteins remaining native-like in vacuum on

the timescale of the IM experiment.

From our analyses, we found that the spread in CCS at any

givenmass of the PDBe is significantly in excess of the resolution

of modern IM-MS instrumentation. We have introduced the

shape factoru in order to assess the averageness of ameasured

CCS relative to the structural proteome. The variation in shape

factor increases with mass such that CCS is more discriminatory

for larger molecules, which may explain why other studies have

found the CCS to be relatively insensitive for small protein as-

semblies (Karaca and Bonvin, 2013). Moreover, if the spread of

the shape factor were explained by overall shape anisotropy

alone, for which IM is relatively insensitive (Hewitt et al., 2014),

then the typical protein would need to have one dimension

several times shorter or longer than the others. This suggests

that the CCSs also reflect finer levels of protein structure. While

these results indicate that the CCS represents a useful structural

restraint for molecular modelling, we have also demonstrated by

comparison with NMR data that experimentally derived CCS

distributions can hold information about the conformational

ensemble that can be inferred from IM spectra. This is consistent

with the observation of apparent resolving powers observed for

a protein complex being lower than for small molecules (Zhong

et al., 2011), the presence of conformations that do not inter-

convert on the IM timescale (Koeniger et al., 2006), and the

visibility of solution-phase effects in the IM peak widths (Zhong

et al., 2014; Zhou et al., 2014).

We have shown that the CCS provides information distinct

from that given by the Rg, rendering it potentially useful for re-

straining MD simulations. Furthermore, the performance of

IMPACT is such that calculating CCS during the MD trajectory

does not add significant overhead to the simulation. However,

two additional factors will need to be taken into consideration

when calculating the CCS of some proteins: the possibility of
reserved



‘‘collapse’’ in the gas phase of intrinsically disordered (Pagel

et al., 2013) or hinging (Hogan et al., 2011) regions; and different

scattering characteristics associated with extended or unusually

concave surfaces (Bleiholder et al., 2011). The former consider-

ation affects the accuracy of all methods for CCS calculations

and the latter also applies to experiments in which the protein

is intentionally unfolded in the gas phase prior to IM measure-

ment (Hopper andOldham, 2009; Ruotolo et al., 2007; Laganow-

sky et al., 2014). Future investigations will allow refinement of

the CCS calculation procedure to accommodate the possibility

of such effects.

In summary, we have demonstrated that our CCS calculator,

IMPACT, is well suited to the varied demands of modern struc-

tural biology and structural proteomics. It is capable of esti-

mating the CCS of proteins and protein assemblies from both

atomic coordinates and low-resolution structural information.

IMPACT furthermore displays a dramatic advantage in terms of

speed (up to 106-fold) relative to alternative methods, without

compromising on the accuracy of the final measurement. By em-

ploying IMPACT to examine the complete structural proteome,

as well as specific structural biology data, we have demon-

strated that IM has the capability to be a very useful approach

for the biosciences: in its own right, as a validation tool, and

contributing to hybrid approaches that combine information

from multiple sources.

EXPERIMENTAL PROCEDURES

IMPACT is written in the C programming language and builds into both a library

for linking with other software and a standalone command-line tool for

Windows, Linux/UNIX, and Mac OS X, all available for download at http://

impact.chem.ox.ac.uk/, together with documentation for usage and installa-

tion. Also available are a list of CCSs for all proteins in the PDBe, as well as

a tool to search within for proteins with similar mass, CCS, and/or u. IMPACT

is currently capable of reading xyz and pdb files with single or multiple models.

Atomic radii can optionally be read from a separate file, which effectively al-

lows for the processing of both all-atom and coarse-grained models as

described elsewhere in this article, or combinations thereof.

General Computation Details

Many of the underlying concepts are illustrated in Figure 2, and the process

flow of IMPACT is described in a flow chart in Figure S2. The theoretical con-

siderations for the calculation and conditions for convergence are described in

detail in the Supplementary Experimental Procedures. Unless explicitly spec-

ified, we ran all calculations under the following conditions.

We performed computations on a single core of an Intel Xeon CPU E5-2680

2.70 GHz processor (except for CCSCalc, which was run under Windows on a

2.9 GHz Intel i7 processor). All our IMPACT calculations were, unless explicitly

stated, performed at optimal octree depth D (see Figure S2D), with N = 32

replicas, target precision t = 1%, and k = 16 shots per rotation. We did not

thoroughly optimize the parameter k, as it has negligible effect on the wall

time. Other than the calculations underpinning the initial comparison with the

TJM (Figure 1B), CCSs reported from IMPACT are not ‘‘raw’’ PA values, but the

result of calibration according to UTJM = 0:8433UIMPACT
1:05.

When parsing pdb files, we omitted all HETATM records (i.e. atoms

belonging to nonstandard residues) and hydrogen atoms from CCS calcula-

tions. Although they can be specified by the user, we took effective atomic

cross-sectional radii to be 2.91 Å for all remaining atoms for interaction

with a 1.0-Å probe particle (corresponding to a helium atom), which closely

resemble those used for biomolecules (Williams et al., 2009). We carried out

TJM, EHSS, and additional PA calculations using MOBCAL (Mesleh et al.,

1996), employing default parameters and unmodified source code with the

following exceptions: increasing memory buffers for storing molecular data

to accommodate large biomolecules; doubling the upper integration limit of
Structure 23
the impact parameter; and setting the number of replicas to one per run. We

measured wall times with the Linux/UNIX ‘‘time’’ command (or by reading

the Windows system time immediately before and after execution in the

case of CCSCalc). Further details concerning the processing of specific data-

sets are given in the Supplemental Experimental Procedures.

As a number of replicas are taken in the calculation, theseN independent es-

timates of the CCS mark a convenient point for parallelization, which we have

implemented in IMPACT to allow several computing cores to simultaneously

take part in the Monte Carlo integration. For better comparison with other

software and for more transferrable performance benchmarks, we only report

single-core calculations in the rest of the manuscript. The demonstrated per-

formance can therefore be seen as a lower limit, with multi-core calculations

being considerably faster.

Defining Resolution and Resolving Power

The distinguishing power of IM instruments is often expressed as the resolving

power RhU=FWHMU, where FWHMU is the full width at half peak maximum.

The resolution in turn is the inverse resolving power, 1/R. Travelling-wave

instruments can have a resolving power of 40 in CCS (Zhong et al., 2011),

corresponding to a resolution of 0.025 or 2.5%.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two tables, three figures, and Supple-

mental Experimental Procedures and can be found with this article online at
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dépolarisation des fluorescences. Translation et diffusion de molécules ellip-
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