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1.1. Basics

Approximately 100 nuclear 1sotopes possess a nuclear spin. The spin I is proportional to a magnetic

moment [ according to i = y(h/2m)I. The magnetic moment of a spin orients itself either parallel or

antiparallel to an external magnetic field By. We assume by convention that B is along the z-axis.

The parallel orientation of the spin is energetically most, the antiparallel orientation is least

favourable. A spin with spin moment I has altogether 2I+1 different states which differ in their

quantum number I,. [, ranges from —I, ~(I~-1), ..., (I-1), I. The energy of the states is given by:
E = —y(h/21)Byl,.

1.1.1. Most important nuclear spins: I = 1/2

Isotope: X [3H |!H |I5N |31p |13¢c |19r |29si |[S7Fe |77se |lllcd |113cd
nat. Ab 0 l 0.377 0.01 |1 47% {2.19% [7.58% |12,75% |12.26%
YV 1.06 |1 0.1 |04 |025(094 [02 {0032 [0.19 |0.21 0.22
Some important nuclear spins: [ 1/2
I=1 1=3/2 1= /2
Isotop 2D 14N 6L TLi 23Na 170
nat. Ab. 1.5102% |99.63% 7.42% 92.58% 1 3.7102%
YY1 0.15 0.07 0.15 0.39 0.26 0.136
The energy level scheme for a 'H and a D are shown in Fig. 1.
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1.1.2. Boltzmann distribution:

Due to the laws of statistical thermodynamics the population of the spin levels by an ensemble of
identical spins is given by the Boltzmann distribution. For a spin ¥2 we find for the population of
o~ (YBo/2KT)

the P state: pg =
P state: pp 2cosh(yBoh / 2kT)




o (YBoh/2KT)

2cosh(yBgh / 2kT)
The factor 2cosh(yBg# /2kT) makes sure that the normalization Po + pp = 1 1s fulfilled. It is also

and for the population of the o state: py =

related to the partition function of a spin Y2 system. The z-magnetization observed for the
Boltzmann equilibrium is given by (g pot+ Hg pp) where |1, represents the magnetic moment of
the spin in the « state: %2 vh and Hp represents the magnetization of the [ state: -2 yh. Thus the

equilibrium magnetization is given by:
sinh(YBoh / 2kT) 1 1

1 ] -4
= L hipe —py =L ~ —yh(yByh / KT) = —1h10
(HaPart p Pp) = 5 M(Po = Pp) =2 1M cosh(yBoh / 2kT) ~ 4 (B0 /KT) =7

for 'H and yBg/2nt = 600 MHz and room temperature.
Therefore only every 10.000th molecule can be observed at room temperature and NMR is
therefore a very insensitive spectroscopic technique. The sensitivity can be increased by increasing

the By, field or by choosing nuclei with the highest gyromagnetic ratio.

1.2e. Principles of measurement of nuclear maenetic resonance:

In principle magnetic resonance can be measured by the application of an electromagnetic field that
is absorbed whenever it meets the resonance condition: AE = hv (cf. Fig.1). We want to introduce
now the vector formalism of macroscopic magnetizations which takes the fact into account that a
whole ensemble of spins contributes to the magnetization of the sample. We have come across the
cquilibrium magnetization M already which is given by Mg = yzthO/(SnkT). It is oriented along
the z-axis. In the following we want to use the equation of motion for the magnetization:
ﬂ:y;’\—1xl§—r(l\7l—Moéz) n

dt
This so called Bloch equation expresses the fact that the change in time of the magnetization is
cqual to the vector product of the magnetization itself and the external field. Due to the nature of
the veetor product. the change in time of the magnetization is orthogonal to both the magnetic field
and the magnetization. The second term describes the relaxation of the magnetization back to the
equilibrium state: M, = Mye,

1.2.1 Rotating coordinate system:

For the description of NMR experiments the rotating frame proves to be essential. For transverse

magnetization we find the following equations for the three vector components M,, M,, and M,

yY
under the assumptions: B = Byg, . YB = ayy = 21y for the Bloch equation:

dM - =

d[-‘ =Y(Mx By, ), =vBgM,
dM, ViV

dl’ :Y(MXBOEZ))’ ==YBoM
dM,




Additional differentiation of the two equations for the transverse components of the magnetization
yields:

d*M,

2
=—(YBg)“My and
dt2 *

d?M

2

L= —(yBg)*M,

These two equations are the classical oscillator equations. Their solutions are:
M, (1) = M, (0) cos(ayt) - My(O) sin(ayt)
My(t) = M, (0) sin(uyt) +My(0) cos(myt)

suppose that the initial magnetization is exclusively along the x-direction with the length M,y we
have: M (0) = My and My (0) = 0. This leaves us with the equation:

M (1) = My, cos(uyt)

M, (1) = My sin(ay)

These equations give us the value for the magnetization components M,(t) and M,(1). These
components form a vector and it is common to write down this vector:

M(U) = Mg cos(wgt)é, + Mg sin(wqt)é,

[t 1s common to rewrite this equation with the convention: I\—/Ix = MOEX;M)/ =Mpey, in the
following form which is rather an expression for a "chemical reaction" than for an equation:

M — M, cos(wgt) + My sin(wgt) . [2]
The transverse magnetization precesses around the static magnetic field By with the frequency: W=
¥By. This precession applies to all nuclei with a given y. The frequency differences due to the
different chemical environment of nuclei in a compound is for most nuclei only in the 106 region

(ppm). This is taken into account by the following formula: @ = YBy(1-0) where o expresses the



AS

chemical shift. However, these small chemical shift differences are the most interesting information
to be recovered from the spectrum. Therefore the huge frequency contribution due to y = vBy is
subtracted from the frequency ® yielding the frequency Q = o — @yp. This is done by the

transformation into a coordinate system that precesses with the frequency @y around the z-axis (Fig.

3).

\w}> .\v};\% &

Laboratory system rotating frame

In the rotating frame the nuclei rotate now with their characteristic larmor frequency w diminuished
by the frequency wy yielding a frequency of rotation: Q = @ - ty. The Bloch equation in the

rotating frame now reads:

M - - - -
%T:yMX(B—%Ez)—F(M—Mer)

Precession in the rotating frame of a magnetization with chemical shift then boils down to-
M — M costQU + M, sin(Qt) . [3]

and
M, — M cos(QuU) = My sin(Qu). (4]

1.2.2 CW irradiation in the rotatine frame:

During an NMR experiment, radio frequency (rf) with the frequency ayy of the rotating frame is
irradiated. The field strenght is normally abbreviated with B|. We suppose that we irradiate a field
of the form: B,({) = 2Bjey cos(wqt) . This linearly polarized field can be split into two components

of circularly polarized f given by:
Bi(1) = B (&, cos(wgt) + €y sin(wgt)) + By (€ cos(wpt) — ey sin(wgt)) (Fig. 4)
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two circularly polarized
B fields

linearly polarized
B field
'HiV X(‘)o : : :

The first component rotates clockwise with the frequency ay), the other counterclockwise with the
frequency —wy.

Transformation into the rotating frame yields:

B (1) = Bj&, + B} (&, cos(2wqt) — €, sin(2wqt))

The clockwise component is a constant field along the x axis whereas the conunterclockwise

component rotates with the frequency —2ay,. It can be neglected for our further considerations.
1.2.3 Transient solutions of the Bloch equations:

The Bloch equation for a nucleus with chemical shift Q under the action of an rf field with strength
YB| = ) disregarding relaxation is therefore given by:
M M x QE, + M x &,

dt
The solution to this equation can be derived in the same way as before for the precession around the
z-axis. However, there are special cases:
When € =0 we have an on-resonance spin. The equation of motion then boils down to a rotation of
the magnetization around the x axis with the frequency ;. We find for example for an initial z-

magnetization:
W<,

M, ———M, cos(w1) - My sin(w;t) (5]
and
M, —25 M, cos(t) + M, sin(;1) (6]

It is casy to see that after a duration t = /(2w,;) the z-magnetization has turned to -M,, which
amounts to an 90° rotation. The corresponding pulse is therefore called a 90° pulse. For t = /(W)
we find that the magnetization is inverted and aligns itself along -M,. The corresponding pulse is a
180° pulse. ‘

When the spin is off-resonance (© = 0) the magnetization rotates about the effective field
= - - =’ . 2 2
Berp /7 =98, +w€, = Qepre, with Qefr =YQ° + 07 and

é, =cosBE, +sin 6, ;arctg() = %—] (Fig. 5)



Fig. 5.

Effective field for an off-resonance pulse

1.2.4 Stationary solutions of the Bloch equations:
The stationary solutions to the Bloch equation are important to understand saturation experiments

as well as spin-lock experiments. These rely on the extended application of CW irradiation at a

certain frequency ay. We find for a field @; = yB; and the chemical shift Q the following steady

state solutions:

M, = MgYB)

Q
(1+Y°BITT) /T + Q7

~1
2

(1+Y°BITT)) / T3 + Q°
'YB]T] /TZ
1+ BiTT>) /T3 + Q7

M, =Mg¥B,

\v] = .\‘1()”_'\{81

/

We can distinguish between two extremal cases.
Weak irradiation:
This means yzBfT‘Tz << 1. The transverse components become:
2
QT35
M, = Mq¥B| ——5— = MqyB|D(Q)
_Q._

+ 17

T,
My =MgYB| ——5— = Mp¥B|A(Q)
’ |+ T5Q7

M, =M,

A(L2) and D(Q) are the absorption and dispersion part of a Lorentzian line and constitute the
response of a spin to the "old fashioned” CW NMR experiments. The z-magnetization is not
disturbed in essence and the response is weak.

Strong irradiation:
. 2.0 .
this means y“B{T|T, >>1. On resonance we obtain:



M, =0

M, = Mo
YB|T)

M, =0

Since T| normally is larger than T, YB|T) is also large and all components of the magnetization
vanish. An on-resonance CW irradiation therefore allows to saturate a spin completely.

1.2.5. 1D experiment:

The 1D experiment is then constructed by a strong 90°y pulse followed by a time t during which the

magnetization is let evolve freely. The response of the magnetization is therefore called FID (free

induction decay).

y
]H I t Fig. 6

z-magnetization before the pulse is rotated to M, during the 90° pulse according to Eq. [6]. After
the application of the pulse the magnetization begins to precess about the z-axis according to Eq.
[4]. The NMR detector is phase sensitive. Therefore both the M, and the M, component in the
rotating frame can be recorded. Recording takes place in the laboratory frame for example along
the x axis. The rotating transverse magnetization induces according to Faraday's law of induction an

oscillating voltage that is proportional to the derivative of the magnetization (Fig. 7).

Phase sensitive detection of the NMR signal by a quadrature detector
A

Z
cos(w,t)

wcos((w—wy)t)

mcos(mt) :
/ Mixer LP-filter W ert

BO \ 1

osin((o-wyt)

sin(w,t)

U(t) ~ owcos(mt)
Fig. 7.

The amplitude of the detected signal depends on the vYB( due to the factor . However, for the
signal to noise ratio only the square root of this factor is gained (YBg)!/2 due to the fact that also the

noise increases with Vo = (yBg) 12,
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In the detector two signals one modulated with cos(w-ap)t and the other with sin(w-wy)t are
recorded. They correspond to detection of x magnetization and y magnetization in the rotating
frame, respectively:

M,: Mg cos(Qt)

My Mg sin(Qt)

Complex addition of the two signals according to M, + IMy yields the signal:

M* = My (cos(Qt)+isin(Qt)) = Mg el (7]

If we take an exponential decay of the transverse magnetization with the constant 1/T5 into account,
the time domain signal is then given by: f(t) = ei€2t ¢-UT2

—iwleiQte—~t/T3 1

IOO

a4 —. . _ e
F(w) = [e m)teere ‘/Tzdt:

. —Tlo =- — = L(®)
—'I(O)—Q)——Tz l((D-—Q)+T2

o

The real part A(w) and the imaginary part D(w) are given in the following way. (Fig. 8)

/T,
(W= +(1/T3)?

A(w) L
(w =
Absorption

T

Q.

1

T,
e ]
/\Dispersion
) —

= D(w) z

w~—-0N
(w—=Q) 4+ (1/T,)?

Both resonances are centered around @ = Q. The absorption part assumes its maximum at this
position whereas the antisymmetric dispersion part is zero exactly on resonance. The line width at
half height of the signal of the absorptive part is 2/T5 on an w scale and I/(nT5) on a v scale. The
absorption part decays to zero with (0-Q) 2 whereas the dispersive part decays only to zero with
(0-Q)!. Therefore the dispersive part of a Lorentzian line is much broader than the absorptive part.
Therefore spectra with pure phases in which the absorptive part of the signal can be observed
separately are most desirable. This not only applies to 1D spectra but also to multidimensional
NMR spectroscopy as well.

1.2.5.1 Phase correction:

Often it is necessary to resolve the linear combination of the absorptive and dispersive Lorentzian
line after the Fourier transformation. This procedure is called phase correction. In praxis, we apply
a phase correction of zeroth and first order. The zero order phase correction is a constant phase
correction applied for the whole spectrum whereas the first order phase correction depends linearly

on the frequency Q.



Zero order phase correction:
In case that the detector for the signal is not aligned with the initial orientation of the magnetization

at t=0 we obtain as initial magnetization for example the following situation:
M(0) = M cos(9)€, + Mg sin(9)e,

e

The phase ¢ is the phase of the signal which can be removed by a phase correction of zero order.
This can be seen in the following way by considering the signal that is recorded:

M, () = cosd cos(£2t) - sind sin(Qt) = cos(Qt + ¢)

My(t) = sind cos(£2t) + sind cos(Qt) = sin(Qt + ¢)

Linear combination of the two signals according to Eq. [7] yields:

M*(U) : f(t) = cos(Qt + ¢) + i sin(Qt + ¢) = el(Q+9)

Fourier transformation of this signal yields:

S(w) =e'® L(w) = cosd A(w) - sind D(w) + i(sind A(w) + cosd D(w))

Real and imaginary part are mixed with cosine and sine of the phase ¢. Multiplication of the
spectrum with 7 eliminates this error in the phase and we are left with:

e 10S() = -0 eid [ () = L(w).

This phase correction can be applied in the computer mainly by interactive dials.

First order phase correction:

A phase correction of first order often originates from the fact that there is a short delay A between
the pulse and the detection. This delay normally amounts to only a few ps. Then the vectors for
ditferent chemical shifts have acquired a phase QA. This phase is linearly dependent on the
chemical shift Q.

Expressed in equations the following orientation of the vectors is obtained:

M*(1): (1) = cos(Qu+0) + i sin(QU+0) = Q240 with ¢ = QA.

Fourier transformation yields: 4

S(w) = FT(f(1)) = el L(w) = cos(QA) A() - sin(QA) D(w) + i(sin(QA) A(w) + cos(24) D(w))
This phase error can be approximately removed by a linear phase correction e'® This leads to the
correct phase correction on-resonance. however, not slightly off-resonance. For example the phase
correction to be applied 1/T, away from the center of the signal should be QA and not (Q-1/Ty)A.
Due to the fact that this is impossible, line shape distortions are effected. The real part of the
spectrum yields:

S() = cos[(Q-w)A] A(w) - sin[(Q-w)A] D(w)
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This 1s a combination of an absorption and dispersion signal weighted with the sine and cosine of
the deviation of ® from Q (Fig. 10). Therefore one always tries to keep the linear phase correction
as small as possible in order to minimize these effects. When the product of line width and delay A

is small compared to 1, the effect is negligable.

N RN

-— +— W

1.2.6. Summary:

The 1D FT sequence rotates with an rf pulse the longitudinal magnetization oriented along the z-
axis into the transverse plane. The magnetization then starts to precess about the z-axis with its
characteristic chemical shift Q. The receiver records the x and y component of the magnetization
and creates a complex signal that after Fourier transformation yields a lorentzian line at the

characteristic position Q.

1.2.7. Sensitivity

The sensitivity of NMR is inherently low because the energy differences between nuclear spin
states are of the order of 10-> of the thermal energy at room temperature. Therefore sensitivity
enhancement is one of the major goals in NMR spectroscopy. The sensitivity (signal to noise. S/N)

of & one dimensional experiment is proportional to:
SIN = N (Yere Bo) Yyer (Yger Bo)7? (NS)172 To/T =N Yoy ch13/2 BOB/2 (NS)1/2 To/T

N is the number of molecules in the active sample volume. The first factor stems from the
Boltzman factor: (Y.xe Bg). Yexe 1S the gyromagnetic ratio of the excited SPIN. Yo Stems from the
fact that the magnetization is detected which is proportional to the gyromagnetic ratio of the spin
being detected. Finally the (yy,, Bg)!/? factor stems from the fact that the derivative of the
magnetization is detected (Yge B) and the amplitude of the noise is proportional to (Y, Bg)!/*. By
is the static magnetic field. NS is the number of experiments, T, is the homogeneous line width,
and T is the temperature. This formula immediately shows how to increase the S/N:
a)  Increase the number of molecules N by increasing the concentration of the sample at fixed
volume, increasing the number of magnetically active molecules at fixed volume by labeling
of low natural abundance spins or increasing the volume of the sample at fixed concentration.

b)  Increase the static magnetic field By,
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c)  Increase NS, either by increasing the number of experiments (NS) or by decreasing the
duration of one experiment that is, decreasing the repetition time, see the section describing
BIRD. '

d)  Increase T, by decreasing the viscosity of the sample.

e)  Choose the gyromagnetic ratio of the excited and detected nucleus to be as high as possible.

For a given sample and magnetic field strength By, item e) especially can be optimized by the
selection of the most advantageous pulse scheme.
Signal to noise considerations are especially important for heteronuclear NMR. Table 3-1a lists the

relative sensitivity for heteronuclear NMR. The relative measurement times to achieve identical
S/N are given in Table 3-1b.

Table 3-1a: Relative Sensitivity S/N

Heteronuclear X exc Hexc X exc H exc
combination X det X det H det H det
H/P 1710 0.25 0.4 1
H/C 1/32 1/8 1/4 1
H/N 1/300 1/30 1/10 1

Table 3-1b: Relative Measurement Time to achieve identical S/N

Heteronuclear X exc Hexc X exc H exc
combination X det X det H det H det
H/P 100 16 6.25 1
H/C 1024 64 16 |
H/N 100000 1000 100 ]

The gain in sensitivity is the more dramatic the larger the difference in gyromagnetic ratio between
the proton and the heterospin. Experiments that start with proton magnetization and detect proton

magnetization are in principle the most sensitive.



2.1. The Density matrix:

The density matrix is introduced for the deécription of an ensemble of quantum mechanical objects.
It is based on the eigenfunctions of a quantum mechanical system. The equation of motion is the
Schrodinger equation for the functions describing the system. The Schrodinger equation acts in the
Hilbert space. We want to derive the equation of motion for the density matrix and introduce handy
bases for the density matrix in addition. We will focus our discussion to a spin system with just one
spin 1/2. So the eigenfunctions in Hilbert space are: o = Im,=1/2> and B = Im,=-1/2>.

The equation of motion for the functions is:

ihy = Hy with \yzga;\y [8]

We want to look at the implications of this equation when we consider an ensemble of three spins.
The first of them should reside at t=0 in the state y, (e.g. a), the second and third are assumed to
be in the state y;, (e.g. B). In addition we require that every of these functions VY and Y, can be
expanded into an eigenbasis to the Hamilton operator ¢; which is always easily possible given the
closedness of the Hilbert space. The eigenvalues of the functions ¢; are h;;. Then we obtain the time

evolution of the functions y(t) and y,(t) according to the following equation:

W](() = Zi Cii (Di exp(ihii[) [9]
YoH({l) = Zi Cy, q)i CXp(ihii[)

The time evolution for our ensemble of three spins is:
W23 00 =y [T wal2)0 ws[3)() [10]

the value for an observable A. e.g. z-magnetization for this state of our ensemble of three spins is

given by:
<A> = <A[l]> + <A[2]> + <A[3]> _ : [11]

and according to conventional quantum mechanical calculus we obtain:

<A> = <y(U) TALy(t)> =
<y (O ALy 0> + <y 200 TALR]:[2)(0> + <ya 310 TAB) wo[3)0>  [12)

Taking Eq. [9] into consideration we obtain:

<A> = Z‘J <¢)i[ 1 ]IA[]]|¢J[1]> C*“ C]j CXp(l(h“-hJJ)[) + [13]



<¢;[2]1 [2]I¢j[2]> c*2i coj exp(iChyz-hy)t) +
<¢;[3IIA[311¢;[3]> ¢™5; co) exp(i(hyj-hy)t)

The expression <¢;lAlg;> = Aj; is the matrix representation of A in the ¢; basis. Since equivalent
spins in different molecules cannot be distinguished, we can leave out the molecule indices and

arrive at the following expression:

<A> =I5 Ay (75 e+ ¢y 0o + i Cy) explithii-hyt) [14]
We define the j.i element of the density matrix to be: pj; = ¢”j ¢ j + ¢y ¢o) + ¢ ¢35,

With this definition the expectation value of A is: <A> = Z; j Ajj pij = Sp (Ap)

We will in the following make use of this central equation. We want to construct the density matrix
for our ensemble of three spinS'

With y[1]= 0 =0y, Y[2] = B = ¢, and y[3] = B we find: py =1, p3;=0, p1=0, pp=2.
The density matrix is then given in a matrix descrlptlon as:

(o 3

(This density matrix is not normalized. From now on, a normalization constant of I/N will be
applied. when N is the number of molecules in the ensemble.

This density matrix has a simple meaning. The diagonal elements indicate the populations of the
spin cigenfunctions: o and P respectively. The level o is populated with just one spin whereas the
level B is populated with two spins. In general. the density matrix is diagonal when all the quantum
systems setting up the ensemble are in an eigenstate of H. However. the off-diagonal elements of
the density matrix reflect the "life” of the spin system. It is obvious that the populations are

mvartant with time. They do not evolve.

w

i1y = pi(0) exp(i(h;i-hij)t) = p;;(0). [1

2.2 Time evolution of the Density matrix:

The time evolution of the density matrix can be constructed from the Schridinger equation that
describes the evolution for state functions. We choose now the notation: ¢, = lk>. With this

notation we can reformulate the Schrodinger equation:
‘h\u =H W:Zi lh C'iq)i :Zici H ¢i :Zikci hki k>

Formation of the scalar product with the function: <fl = I(b*fdt yields:



ith = Zi Ci hli

From the analogous equation for ¢, ™ we find:

-y = (hy) = (Hy)" =5 ih(¢;)" ()" =% (¢; H o))" = Ty (c; hy; k>)* = Zik ¢ hy 07

and after multiplication with <ml we obtain:

These two equations can now be merged together by multiplication of the first with Cm and the
second with ¢, and we obtain:

L 4
L J
*

ih[c, ¢ +(cm)c, ] =ih(c, cm)’ =3 (hi i cm™ - ¢ him)

With the convention: py, = cc,* we find:

ih(p/m ) = Zi (hy; Pim - Pui him) = (Hp - pH)tm = [va]im

This is the Liouville von Neuman Equation. It describes the evolution of the density matrix under
the action of an Hamiltonian. The general solution to this equation for a time independent

Hamiltonian is given by:

(1) = C—iHl/h p(O)eiH[/h

2.3. Bases of the Density matrix:

The density matrix can be represented in various bases. For spin Y2 with the functions o and f there
are two bases sets in use that can be even mixed for certain applications. The first is constructed
from so called single element matrices. This means that every operators being a basis vector of the

density matrix contains just one non-vanishing element:

L0 70 0 0 1 00
I“:[o 0 'IB:(O IJ'I+:(O OJ’I": I 0



Whereas 1y and Ig represent populations of the o and B state, we have to find out what the

operators [, and I_ represent.

The second even more commonly used basis set is the set of cartesian operators:

1 0 1 0 0 1 ‘ 0 -1
L=1/2 LE= I, =172 Ay =1/2
] 0 -1 0 1 10 I 0

The two basis sets are connected with each other by the following equations:
Iy="2(E+2I,), Ig="2(E-2I) L=L+il =L -1l

For the cartesian operators we find the following equations:

Vil =11, Vil =1, 1,
Vil =1, 1, Vil =1, 1,
Vil =1,1, Vail, =1, 1

V=L I =11, =1,1,

The one element operators fulfil the following equations:

I_1,=1g L1 =1,
llp=lgle=11,=11=0

I, 1, =1, g1 =1Ip
L1, =0 1, =1,
1, =1 I,1_=0
LIy =1, g1, =0
15 =0 gl =1

We are now in a position to calculate some expectation values for some operators A in order to find
out by the properties of a certain spin state what this spin state is. E.g. we find that if p = I, then the
spin system 1s in a state containing z-magnetization. <M, > = Sp(yl,p) = Sp(yl,1,) =y Sp(1/4) = y/2.
This state does not have any x or y magnetization because Sp(yl,I,) = iy/2 Sp(ly) = 0.

One element operators 1y and Ig on the other hand do not contain any transverse magnetization,

however. they do contain z-magnetization:

<M,>=7¥ySp(lyl) =0 <M,>=ySp(Igly) =0
<My>=¥Sp(lgly) =0 <My>=17Sp(Igly) = 0
<M, > = ySp(l,l,) =v/2 <M,> = ySp(IB L) =~y



For the transverse single element operators we find:

<M,> = vSp(I_ 1) = y/2 <M,> =1Sp(I, L) = y2
My>=SpLL)=-iy2 - <M>=y5p(l, 1) = iy2
<M,>=ySp(I_L) =0 <M,>=1Sp(I, I,) = 0

Obviously the single element operators I_ and I, contain x and y magnetization.

Product operators:

In order to describe spin systems of more than one spin, the density matrix is expanded in products
of operators or so called product operators. Consider for example a two spin system. There are four
spin states: ao, of, Bo and BB. The density matrix is therefore a 4x4 matrix. We can form a
complete basis of the 4x4 matrices by forming the Kronecker product between the basis operators

for each spin. In this notation, e.g.

01 00
10 | 1 0 11000
[ Sq=— ® =—
2810 0 0) 210 0 0 O
0 00O
by the same token we find for 2LSy:
0 0 0 -l
10 1 i(0 -1 |0 0 -1
288, =2- ®— =—
: 2000) 2010 2001 0 0
I 0 0 O

It is found that products of operators for different spins can be treated successively. This is one of
the extremely nice properties of product operators.

2.5. Hamilton operator:

The hamilton operator for a spin system with different spins in a molecule has to be discussed.
From the correspondence between the energy and the Hamiltonian we find:

E =-[iB = -/Byl, = —hol,

This is the Zeeman term or chemical shift term. In the rotating frame this reduces to E = —hol, .

Often we write the Hamiltonian in frequency units by dividing by h/(2m).

Pulses are represented in the rotating frame by an additional constant field along x or y:



E = -[iB| = —1B,1, = —hw,I,

Finally the coupling is represented by the following bilinear term:
Ey=hJ IS, +1,Sy +1,S,).

In the weak coupling limit, the energy is given by:

Ey=hJILS,

We will solve the Liouville equation now for certain commonly encountered situations:

2.5.1. Chemical shift evolution:

The Hamiltonian in frequency units is: QI,. We solve the Liouville von Neuman equation:
HIx = [Ql,, I ] =1Qly; ily =[QI,,I,]=-1Ql;

Comparison of these equations with those in Chap. 1.2.1 immediately yields the following

evolution:

> Iy cosQt + 1y sinQt

v > I, cosQt—1, sinQt

2.5.2. Evolution of Coupling:

For the evolution of the coupling in the weak coupling approximation we find:

tly =21, S, 1 )= 1m21,S,;
121,S, =21, S, .21, S, ] = —imJly
From these two equations we find in an analogous way:

Iy -> g cosmt+ 21y S, sinmlt

> 21, S, cosmJt - I, sinmt
In addition we find for I, the following transformations:

[, > Iy cosmJt - 21, S, sinmt



21, S, -> 21, S, cosmJt+ I sinmtt
Another handy result is the following: (IxSy,2mJ1,S,] = 0. This is a general result and the
conclusion ist that a product of transverse operators or two different spins I and S does not evolve

the [,S coupling.

2.5.3 Successive Evolution:

Normally chemical shift and couplings or chemical shifts and rf pulses act simultaneously.
However, whenever in a Hamiltonian we have commuting parts they can be applied successively.

This 1s easily seen in the following way. The time evolution of the density matrix is given by:

p(t) = e "i(H +Hy )lp(O)ei(H' +Ha)t e_iH‘(e_iH3lp(O)eiH3[eiH'l, provided H; and H, commute.
During free evolution the chemical shifts: QI, and the couplings 2nJI,S, commute. In addition,
chemical shifts commute mutually. However, neither of these operators commutes with pulses.

Therefore, free evolution of chemical shift and coupling is interrupted by the action of pulses.

2.5.4. Detection:

The detection operator is given by: I, and I,. We find that we can only detect I, or I,. This is a

result of the following equation:

<Iy> = Sp(l;p). The latter product vanishes unless p contains I,. The same is true for Iy.

Therefore we only detect cartesian product operators that contain just one operator either I, or L.
Detection of M +iM, = ¥Sp(l,p) +i ¥Sp(I,p) = ySp(I,p) = O except for p = I_. Therefore I_ is
detected in the quudrzllure detector.

2.5.5 Evolution of chemical shift for single element operators:

Evolution of chemical shift for single element operators can be derived in the same form as we did

for the cartesian product operators:

i}+ =[Ql,.1,]=Ql, and i;_ =[Ql,. 1_]=-QI_
Integration of these two differential equations yields:
L= e N, (0):and I_(0 = e ¥1_(0)

this shows that the single element operators evolve chemical shift with an exponential function.

They are also eigenoperators under the evolution of chemical shift which is sometimes of great



advantage. The single element operators also have the unique property that under any rotation about

the z-axis they are transformed into themselves:

B, =¢e®I_;B, [, =el®I orin general: B, I, = eP® I_ with p = 1. p is the coherence order

which is I for L.

A product of single element operators has the sum of the coherence orders of the individual

operators. E.g. 8, [,S, = €20 .S, Thus p = 2 and we have double quantum coherence.

In addition the evolution of a coherence of the type I, S, can be described very easily. We find for
the evolution under chemical shift: '

IS, > 1,S,e  (Ch+lsht

I,S_ ->1,S_e i(€ai—Rs)

It can be seen that the double quantum coherence I, S, evolves the sum of the chemical shifts of the
two involved spins, whereas the zero quantum coherence I, S_ evolves the difference of the two

chemical shifts.

2.5.6. Evolution of coupling for single element operators:

We find for the evolution of coupling using the commutation relations:

il =[2m1,S,.1, )= nJ2L,S, ;

121,S, =[{2nJ1,S,.21.S, ] =nJ1,
We derive using the carhier results:

[, > 1, cosmJu+ 21, S, sinntit

2,8, -> 21,S, cosmt + 1, sinmtlt

Doing the same with the operator [,S_ under evolution of the coupling to a third spins T we arrive

at:

1 I+ S_ = [2T[JITT7,IZ + 2n‘ISTSZTZ‘ I+S_] = TC(JIT - JST )2I+S_TZ

iZI+S_TZ = [QT[J[TTZIZ + ZRJSTSZTI_*2I+S-TZ,] = Tf(JIT - JST)I+S—

from this set of differential equations we obtain the following evolution:



I+S_ -> I+S_ COS[T[(JIT—JST)t] + 2I+S_TZ Si“[n(JIT_JST)t]
2I+S__Tz -> 2I+S_ TZ COS[T[(JIT*"JST)[] + I_,_S_ sin[n(JIT—JST)t]

Multiple quantum coherence obviously evolves the coupling to a third passive spin with the sum of
the couplings weighted with the respective coherence orders of the spins involved in the multiple

quantum coherence.

3. Hand waving derivation of the Product Operator Formalism

We will use throughout this course the product operator formalism, which is the most appropriate
tool for the description of complicated experiments for weakly coupled spin systems. The product
operator formalism provides a handy description of the states of the spin system under conditions
which can be described by a density matrix. Like any quantum mechanical state, the state of the
density matrix has certain observables, such as magnetization, which have to be extracted by
mathematical procedures.

We have presented a mathematical introduction in the previous chapter, starting from the Liouville
von Neumann equation and introducing the observables as traces of the product of density matrix
and the corresponding operator to the observable. This approach can be reread in many references
(1-3). Now, we present a more phenomenological introduction based on analogy to the easy-to-
grasp vector model. This approach was also used in Ref. (4).

In the vector formalism, the magnetization of a spin is composed of the components M,. M,, and
M,. These magnetizations precess around an externally applied magnetic field tracing out the
surface of a cone. This external field may either be the static magnetic field along the z-axis or a
transverse field which is generated by an rf pulse and is static in the rotating frame. The axis of the
cone on whose outer surface the magnetization precesses is given by the orientation of the external
field. The precession frequency wis given by the product of the field strength and the gyromagnetic
ratio: = YB.

The precession of magnetization in the rotating frame due to its chemical shift is understood as the
precession about a static field along z with strength Q. This is illustrated in Fig. 3-la for the
evolution of x-magnetization. The transformation properties for the other orientations of

magnetizations are:

Q1 Q1
My > M, cosQt + My s1nQ2t My > My cosC2t - M, sinQt
M, -> M,

The application of rf pulses can be understood as the application of a magnetic field that is static in
the rotating frame and lies in the transverse plane. A pulse about the x-axis originates from a field

B, along the x-axis in the rotating frame. Any magnetization will then precess about this axis with
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the frequency w; = YB,. Fig. 3-1b gives a graphic representation of this precession for the evolution

of z-magnetization. z-magnetization is present, for example, at the beginning of any pulse

sequence.
o)t

My -> M, cosopt + M, sinwjt = My cosf + M, sinf

M, -> M,coswt-Mysinwjt=M, cosp - My sinf

M, -> M,

The flip angle B is given by the product of rotation frequency @) and the duration t of the pulse. A
special duration is t = /2w, which defines a 90° pulse. A 90, pulse (which is a transverse field of
duration t = 7/(2yB)) followed by evolution of chemical shift will lead to the following

transformations:

90 Qt
M; > My > M;cosQt+ M, sinQt

A phase sensitive detector records M, and M, as a function of time and stores them in different

memory locations A and B, respectively. A complex signal is reconstructed, of the form:
exp(1Q2) = cosQt + i sinQ2t

by adding the contents of A and i times the contents of B. Fourier transformation of this complex
FID yields a complex Lorentzian line provided the FID decays with a time constant T>.

The transiion to the product operator formalism is achieved by the following correspondence
principle. The magnetization M generated by the ensemble of microscopic spins is replaced by
operators I which are indexed by the cartesian coordinates. I, then represents a state of an ensemble
of spins I that carries x-magnetization. The transformations and properties indicated above are
exactly the same as for the magnetizations:

Thus precession of a state of the ensemble that carries [ spin magnetization about a static magnetic
ficld along z with frequency € in the rotating frame gives the following transformation:

[y -> Iy cosQt + Iy, sin€2t Iy -> 1y cosQt - I, sintu

y
I[->I[

A transverse B field, e.g. from the x-direction, will lead to a precession about the x-axis with the

frequency w; = yB,:

Iy -> Iy coswjt+ I, sinopt - 1, -> I, cosayt - Iy sina;t

I, > 1



Thus a 90,° pulse (which is a transverse field of duration t = n/(2yB)) applied on the equilibrium

state of the spin followed by chemical shift precession will lead to the following transformations:

90 Qt
I, > I > IicosQu+] sinQu

3.1. Coupling:

The advantage of the product operator formalism is that it allows the description of coupled spin
systems, where states that do not carry observable magnetization play the central role. The
transformation of these non-observable states under pulses cannot be described by the vector
formalism. We will introduce those states relying as long as possible on the vector formalism.
Suppose we have a spin that is coupled to another spin with a coupling constant J = 10 Hz and
therefore appears in the spectrum as a doublet. When transverse magnetization of this spin is
excited it disappears at odd multiples of 50 ms and then reappears again. In the vector model this is
rationalized by two magnetization vectors that rotate in opposite directions, each with a frequency
of 5 Hz. The two vectors are oriented antiparallel (antiphase) after 1/4 of a full revolution, i.e. after
50 ms. The state of the spin system at 50 ms is devoid of any macroscopic magnetization, yet it is
very different from the state that is reached after a long irradiation of the spin of interest, which
destroys all magnetization. The product operator formalism makes it possible to describe states
without observable magnetization. These turn out to be the crucial states of a spin system which
mike possible most of the heteronuclear transfer experiments we are about to discuss in this
Chapter. We come back to our two-spin system again:

A spin Iy that is coupled to another spin I, (spin 1/2) appears as a doublet in the spectrum. The
doublet structure of the signal of [} arises from two different types of molecules, namely one type
of molecule in which [ is in the o-state and a second type of molecule in which I5 is in the B-state.
Suppose the chemical shift of the spin 1} is Q). Then. the frequency of the I, line in the I, spin-
isomers 1s Q+7J. and the frequency of the I; line in the Ig spin-isomers is €2-1tJ. The spectrum
of the I spin is the superposition (sum) of the spectra originating from the two spin-isomers (Fig.

3-2). Therefore we can write down the transformations in the following way:

II,\'I?.CL -> IIXIZCZ COS(Q"‘FT[J)[ + I]),Iz(x sin(QﬁnJ)t
Lixlap > Tilop cos(Q-mh)t + 1y Irg sin(Q-m)t

We need to introduce two rules:

1) la+IB:l



T
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This equation can be rationalized by referring to the previous chapter or by considering I, and Ig as

the probability of finding a spin in these states or the population of these states. Since there are just

these two states for a spin 1/2 the sum over these probabilities is 1.
2) Ip-Ig=2I,

This can be rationalized by referring to the previous chapter or by the observation that a population
difference between o-state and B-state carries z-magnetization. The factor 2 is Jjust a normalization
constant. This rule actually describes a transformation from a single element basis set for the
description of longitudinal magnetization (I, Ig) to a cartesian basis set (21, identity operator) (2).

With these two rules for the calculation and some trigonometric transformations we arrive at:

Iix-> Ijx cosnt cosmJt + I}y sinmt cosmt
+21}y 15, cosmt sinmlt - 213,15, sinmt sinmJt

The transformation properties of Iy can be obtained by cyclic permutation: x -> Yy ->-X ->-y.

The state 214,15, is a product of two operators. It does not carry magnetization; in fact it is a
general rule that only states of the spin system that can be represented by a single operator carry
magnetization. The 21yyI5, operator is called an antiphase operator (Fig. 3-3). This becomes

plausible if one considers this operator in detail:

2yl =1y Iag - 11y Ing

Obviously. 21,15, is the difference spectrum of the spin isomers with I, in the o and in the P state.
This spectrum has two lines at Q+7J and at Q-1uJ. respectively: the two lines have different sign.

In the absence of pulses such an antiphase operator evolves as follows:

2lhylo, > #2141y, cosQ tcosmIt - 21 Iy, sinQt cosmlt

-lyx cos€tsinmlt - I}, sinQ jt sinmlt

The transformation properties of product operators under pulses are as follows::

- A pulse is applied to all operators individually.

- Chemical shift evolution and evolution of coupling need not be applied simultaneously in
periods of free evolution that may be interrupted by 1800 pulses. Often one achieves a
simpler description by consecutive application of the interactions to the spin state (vide
infra).

To conclude this rather cursory introduction to product operators we discuss the polarization

transfer process that is essential for all experiments in high resolution NMR that use J coupling for

transfer of magnetization from one spin to another spin. Using the product operator formalism (and
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assuming for the moment that spin I; is on resonance), polarization transfer can be described very
simply. An in-phase operator Iy, evolves during a delay A completely into an antipﬁase operator
211ylp,, provided sintJA = 1, i.e. A = 1/(2]). Application of a 90y pulse to I; and I, transforms this
operator into -213,l2y, which after another delay A = 1/(2J) forms IL,,; this state again carries
observable magnetization. Thus transverse magnetization of spin I is transferred to transverse

magnetization of spin I,.
3.2. Some handy formulae for product operator calculus;

Transformations of cartesian operators under pulses, chemical shift and coupling provides:

Iz——ﬁx—-ﬂz cosP + sin BI, I,(—E’{—*Ix cosP - sinBI, Iy —ﬁy—-ﬂy
Iz——ﬁl—»lzcosﬁ—sinﬁly Ix——E"-—>Ix Iy~—6‘——>1ycos[3+lzsinﬁ
L1, o —Pisr cosp+Iysing o Iy—Pae1 cosp-I sing
o1, L~ cosQt+1, sinQt I, —22 > 1, cosQt - I sin @t
ix —2udS, I cos(nJt) + 21, S, sin(xlt) Iy —2mdS, Iy cos(ault) — 21, S, sin(lt)

All these transformations have the same structure: If we consider the left hand side to represent an
educt of a transformation, then the educt is reproduced on the right side with a cosine. In addition
exactly one product is formed with a sine. The argument is B for a flip angle, it is Qt, and it is 7Jt
for a coupling. Only the evolution under coupling can increase or decrease the number of operators
making up a product operator. Only the number of z-operators is changed. It is either increased by
1 with the sin(rJt) or it is decreased by 1 with the same factor. Creation or annihilation of a z-

operator ensues modulation with the sine of the coupling.

Transformations of single element operators under pulses, chemical shifts and couplings provides:

I, —ﬁ—¢>la cos’(B12)+1,sin*(B/2)+i/2(I,e™ —1_e*)sin B
I -ﬂilﬂ cos’(f/2)+1,sin*(B/2) ~i/2(I+é’i¢ ~1.e")sin B
1;@1+ cosz(ﬂ/2)+l_Sinz(ﬂ/Z)eiz"’~ei¢sin,6'(la—1ﬂ)/2
I il_ cos’(B/2)+ 1, sin*(f/2)e™ + ¢ sin BU,~14)/2
R el e
LI, 274, S, I+Iae"i"“ 1, 2], S, I_Iaei”h

I+Ig 210U, S, ‘I+I‘36inh I_IB 21, S, I_IBe—-thJt



Signal structure

Most of the NMR experiments to be discussed create during evolution times or detection times
certain operators that predefine the structure of the signal to be observed later on. Therefore we

want to know which traces which operator leaves in the spectrum.

Given a two spin system we find for an initial state at t=0 : I, the following transformation:

Iy —cos(mJt) (I, cosQt + Iy sinQt) + 25, sin(mJt) (Iy cost — I sinQt)

Only the first two terms can be observed and according to the recording of both I, and I, in the

phase sensitive detector, the signal is cosmJt el Of course we know that the Fourier

transformation of this FID yields a doublet at the position  with a splitting of 27J:

2

Ot FT
e cos(mlt) = .
Q

We can obtain this signal also by explicite Fourier transformation:

R l . . _
C(NKJUCIQI ::(CI(Q-HUH +ex(Q nJ){)

So we expect to lines with equal phase at the positions Q+7J and Q-nJ as is shown in the Figure.
Such a signal is called in-phase absorptive signal.
The next signal type is derived from 21,S,. According to the evolution under chemical shift and

coupling we obtain:
21S,— cos(mt) 28, (I, cosQt + Iy sinQ21) + sin(mJt) (Iy cosQt — I, sinQ2t)
We can detect here:

sin(Tet) (1 cosQt — sin2t) = sin(th)ieim = %(ei(Qﬂd)l - ei(Q_nJ)l)

o
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Obviously, we expect two absorptive signals at Q+nJ and Q-7J, however with opposite relative

sign.

21)

S S
04

o I P
sin(lt)le  —

Q

Such a signal is called an antiphase absorptive signal.

Obviously, the operator 2I,S, yields an absorptive doublet in antiphase in the real part. The
corresponding operator is therefore called antiphase coherence. The corresponding operators with
Iy instead of I, would yield dispersive signals. It should be noted that when I, yields an absorptive
signal then all operators of the form I,S,™ also yield absorptive signal.

The shape of the signal and the operators are clearly linked with each other. We obtained an in
phase signal when no z-operator was created or annihilated because then the coupling evolution
yields only cosine modulations. Creation or annihilation of a z-operator introduces a sin(mtJt) which

leads to an antiphase splitting.

Also the single element operators give unique spectra: For example we have learned the

transformation properties of the operator: 1_S:

[Sq = 1.Sg el = iU+t Fourier transformation of this signal gives a single line at

position: TJ+Q2.

On the other hand I_Sp yields a line at Q-nJ:
.Sy — I~SB e—IeiQU = H(Q-TI)

The next thing to worry about is now: How does this work out in a n-spin system?



3.4. Signals in multi spin systems:

Let us look at a three spin system: I S T. All spins shall be coupled and we want to discuss
evolution of the following operator under chemical shift and couplings. We retain only the

detectable part and obtain as signal:
2L S,: e U sin(nl gt) cos(1t) pt)

The Fourier transformation of this time domain signal can be done by Fourier transforming each
factor in the product and then convoluting the result. The Fouriertransformations of each of the

products are given in the figure on the next page.

3.5. 2D spectroscopy

2D spectroscopy is the realm of pulse sequences that are constructed in the following way:

b b

2D IPrcparution” Evolution Mixing Detection L

3.5.12D COSY

The COSY pulse sequence correlates two spins that are mutually coupled. The pulse sequence is:
p q p y p p q

y y

H |t b
1. 2. 3. 4. 5.

We separate the pulse sequence and start with the Boltzmann magnetization at position 1:

], Il[+l:)_/_

2. I|X+IZX

Since we treat a sum we can consider the evolution of each of the contributions separately. We will

first look at the [ term.

[0S

le



Evolution of coupling and chemical shift yields:

3. Iix=cos(mlty) (I cosQyty + Iy, sinQqty) + 21, sin(rlt;) (Iyy cosQt; — Iy, sinQty)
They are transformed by the 90, pulse into the following four terms:

4. cos(mty) (-Iy; cosQyty + Iy sinQyty) + 21y, sin(rlty) (Iyy cos€yty + 1}, sinQ )

Now free evolution takes place until the signal is detected. Two of the operators cannot be observed

and they do not form operators that are observable: These are: 1}, and 2I,, Iy. So we are left with:
4. COS(HJ[]) Ily SinQ][] + 212X sin(n',Jtl) IlZ Siantl

Since only I, and I, terms can be detected we can reduce the number of signals taken into account.
We also know that whenever a term of the form I, is created, a term I, is concommitantly created

which is shifted in phase by 90°. Therefore we detect during t, the following operators:

5. cos(rlty) sinQty cos(ntty) (I}, cosQyty - I sinQ ) +
sin(redty) sin€2 1ty sin(mts) (12y cosf2sty - I, sinf2yty)

The detected signal is then given by the usual combination procedure and yields:

S. cos(rlt, )xin(Qltl)cos(thz)ieiQ“? Q515

+sin(rty ) sin(2ty) sin(nJt, die
The first term leads to the diagonal signal, since the chemical shift evolving during t; is the same as
the one evolving during ta. This is not the case for the second term where we have evolution of Q
during t; and Q> during 5. The above given signal depends on two time variables that can be

Fourier transformed separately. Fourier transformation along t5 yields:
Diagonalsignal Kreuzsignal

cos mJt, sin 2,1, /] /} sin wJt, sin ¢,

T 0
Vo |/ =
2x .

We have arbitrarily corrected the diagonal peak to dispersion the cross peak to absorption.
The remaining modulation along t;: cos(mJt))sin(Q;t})andsin(7tJt})sin(2t,) is not of the form

we would like it to have, namely of the type:

cos(mit, Jie Htior sin(mlt, et
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This problem can be remedied by recording a second experiment in which the phase of the first

pulse is rotated with respect to the second by 90°. This yields the following second signal:

1215

5. cos(mlt))cos(€24t)) cos(mlt, )ie +sin(thl)cos(Qltl)sin(thz)ieiQ3‘2

Combination of the two signal forms yields now a modulation in ty according to:

cos(mJtie!Ht , sin(mt, )ie' 22
Vo I/

Fourier transformation along t; provides then the multiplet structure of the diagonal and cross peak.
The diagonal peak is in dispersion, the cross peak in absorption in both frequency dimensions. In

the cross peak, the active coupling is in antiphase in both dimensions.

doubly dispersive doubly absorptive
diagonal peak cross peak
a8l 1¢ e ®
§}'Vj @ Ql Ql
o @ ® o

g S

2

After this long calculation we want to discuss this experiment again from a bird's perspective so
that we do not have to discuss all the terms for all experiments. This would be impracticable given
the large number of pulses encountered later on. The key pulse in the sequence is the 90° mixing
pulse. Suppose it acts at position 3. in the sequence on an operator of the form: I}y I,™ where [,m
represents a product of m I, operators, then a 90,° pulse will produce only detectable terms for
m=1 at position 4. 21,15, —: -2I5,1},. This so called coherence transfer is the most frequently used
tool in NMR spectroscopy. A 90° pulse transfers antiphase coherence on one spin to antiphase
coherence on a second spin.

We can now formulate the transfer that leads to the cross peaks:

90,

L
Il/, ’le

90, 1
’2lel2z . a"2117_[2x = )I?.X
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The transfer function for the cross peak signal is given by:
. . . - 1805t
sin{mJty) sin(€2yt;) sin(mJt, )ie" 22

There is only one additional operator that passes the 90°y pulse and that is Iy It leads to the

diagonal peak.

90,

90,
Ly, — I}

SN 3 Lo
Ily )Ily 9le

The transfer function for the diagonal peak is given by:

cos(mlt, )Sin(Q]t])COS(TEJ[z)ieiQIlZ

The transfer function of the cross peak contains two sine functions whereas the diagonal peak
contains only one in each time domains t; and t,. Therefore the phases of the peaks are 90°
different.

3.5.2.1 COSY of a three spin system:

We want to apply the COSY experiment to three spins Iy, I, I3 and construct the cross peak
between Iy and 1. The transfer pathway is the same as for two spins since the 90° pulse selects the

two spin anti phase operators:

90, G 90,

{~
X 2leIZ/. ) a_?-11'1.12)( B aI2x

¥ h
The transfer function can be easily written down:

Siﬂ(T[JI:[I )Cos(nll3l|)sin(§2,[] )Sin(n]lzlz).COS('/IJ]}[?_)iCiQZ{z

The transfer function is different from the two spin COSY spectrum only by the additional
cos(rtyy3ty) and cos(m))3ty) terms. We obtain a 16 line multiplet with the active coupling J5 in

antiphase in both dimensions and the passive coupling J;3 in-phase.
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3.5.2 P. COSY:

The diagonal peak in the COSY experiment is dispersive in both dimensions when the cross peaks
are in absorption. The dispersive tails of the diagonal peaks therefore often overlap with the cross
peaks close to the diagonal and deteriorate the spectral quality. Therefore it is highly desirable to
suppress this signal. This can be achieved in the following way.

If we consider the transfer pathway that leads to the diagonal peak in the COSY we have:

90, 1 90 t

Yo ! Y 2
IIZ 7IL\. IIly ‘/I]y 7IIX

This is transfer is effective independent of the flip angle of the mixing pulse. Therefore we can
suppress the dispersive diagonal peak by subtracting a second experiment. in which the flip angle of

the mixing pulse is 0.

9()_\ (O 0), . Ly
V4 Ix ’Ily ’Ily

le

The latter transfer does not create any cross peaks so that the signal to noise for the cross peaks
decreases by a factor V2. The experiment with the O degree mixing pulse allows also for the

following transfer leading to a diagonal peak:

(s

) 0

v
)I]x -

ﬁllx >le \le

This transfer yields however an absorptive in phase signal which can be more easily tolerated.
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3.6. Basic heteronuclear experiments

Correlation experiments between heteronuclei make use of the coupling constants between these

nuclei; values for some heteronuclear coupling constants are summarized in Table 3-2.

Table 3-2: Some Heteronuclear Coupling Constants

Nuclei H.C H,N H,P

1 125-250 90 700
B 0-20 0-10

3] 0-10 0-5 0-20

Heteronuclear !J couplings are at least an order of magnitude larger than the homonuclear 2J(H, H)
and 3J(H,H) couplings. The 2J and 3J couplings tend to be smaller and of the order of proton-proton
coupling constants. Since the time required to transfer magnetization from one nucleus to another
nucleus is of the order of J-1, the use of large couplings is advantageous for molecules with short T,
times. This concept is important in the studies of completely 13C labeled proteins.

Consider a correlation experiment between two protons separated by three bonds. In a homonuclear
experiment the time required to transfer magnetization between two protons in a H-C-C-H moiety,
with the protons sharing a rather large 3J coupling of 10 Hz, is 1/] = 100ms. The double
heteronuclear relayed transfer, however, H->13C->13C->H requires only 42ms for J- = 140 Hz
and e = 35 Hz (Fig. 3-4). In addition. the 3J(H.H) coupling is strongly conformation dependent
whereas the 1J(C.C) and 'J(C.H) couplings are not. Furthermore, every relay step involving a
carbon atom can be directly transformed to an evolution period. leading to multidimensional NMR-

experiments that spread out overlapping proton resonances from large molecules.

Heteronuclear sequences are constructed almost exclusively from 90° and 1800 pulses and delays.
The essential building blocks are:

I) Simultaneous application of 90° pulses to both nuclei. Assume that we have transverse
magnetization of a spin at a given time during the course of a pulse sequence. After a suitable delay
A. there will be antiphase magnetization of spin I present, of the form 21,S,. Two 90° pulses
perform coherence transfer to -21,Sy which represents antiphase magnetization of spin S. This
transfer was already described for COSY (5,6) and applies to the heteronuclear analog INEPT (7-9)
(Fig. 3-5a.b). Thus transverse magnetization of spin [ (-Iy at the beginning of Q) can be transferred
to transverse antiphase coherence of spin S: -21,Sy (a) or vice versa (b). This method of transfer
forms the basis for so called transfer experiments via scalar coupling in the majority of pulse
sequences. Chemical shift of spin I evolves before the transfer and chemical shift of spin S evolves
after the transfer. Longitudinal two spin order (represented by the product operator 2L,S,) s

obtained between the two 90° pulses when they are applied consecutively rather than
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simultaneously. The longitudinal two-spin order 2L,S, is not detectable, but it is oriented along z
and therefore invariant under rotations about the z-axis. Therefore B, gradients (vide infra) can be
inserted in coherence transfer segments between the 909(I) pulse and the 90°(S) pulse without

affecting the coherence transfer from I-coherence to S-coherence.

2) Selective application of a 90°(S) pulse: this turns antiphase magnetization of spin I: 2IySz into
two spin coherence which is transverse on both spins: 21,Sy (Fig. 3-5c and d). Two spin coherence
evolves according to the chemical shift of both spins I and S. The coupling J(I,S) between the two
spins is, however, switched off. Subsequent insertion of 180° pulses can refocus chemical shift

evolution of either I or S.

3) Application of 180° pulses in the middle of a delay to refocus chemical shift and/or
heteronuclear couplings. Four different situations must be distinguished (Fig. 3-6a-d):

A 180° pulse applied to a spin I in the middle of a delay 2A refocusses its chemical shift at the end
of the delay 2A. The heteronuclear coupling between I and S is refocussed after 2A if either a
180°(I) or a 1809(S) pulse is applied in the middle of the delay.

Another way to think about the action of 180° pulses is the following (10): Each individual 1800
pulse inverts the evolution of chemical shift of the nucleus to which it is applied (jumping from the
Q line to the -Q line or the reverse, figure 3.6). Each 180° pulse also inverts evolution of all
heteronuclear couplings of the spin to which the pulse is applied (jumping from the Jy¢ line to the -
Jyc line or the reverse). The evolution of heteronuclear coupling and chemical shifts in arbitrary
sequences of 180° pulses can thus be visualized as shown in Fig. 3-6.

As an example. the more complicated sequence in Fig. 3-7a behaves as follows. The duration of the

proton pulses is assumed to be negligible:

- Evolution of heteronuclear J(I.S) coupling (Fig. 3-7b) during Ay - Ay + Az - Ay
- Evolution of the chemical shift of I (Fig. 3-7c) during A, - Ay -1(180%) - A3+ AD,
- Evolution of the chemical shift of S (Fig. 3-7d) during A, + Ar- Ay-4y

With this graphical representation of the evolution of interactions. sequences that achieve a certain
desired behaviour with respect to evolution of all three possible interactions can easily be designed.
If. for example. the coherence at the beginning of A contains only longitudinal proton-operators,
proton chemical shift evolution need not be taken into account. The two 1809(I) pulses can then be
concatenated to one 1809(I) pulse at A|+2A5+A, provided A3>A, (Fig. 3-7e). Net evolution of Jcu
and Q¢ is the same as for the original sequence. If on the other hand the coherence at the beginning
of Aj contains only longitudinal carbon operators, carbon chemical shift evolution need not be
taken into account. The two 180°(1) pulses can then be concatenated at the position A;+A, and the
1809(S) pulse is located at A} - A5 (Fig. 3-7f).
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As a rule of thumb, 180° pulses can be concatenated if the number of 180° pulses is larger than the

number of interactions one has to consider.

We now discuss some basic sequences.

3.6.1. HMQC (Heteronuclear Multiple Quantum Correlation), HMBC

(Heteronuclear Multiple Bond Correlation)

HMQC (11-14) is one of the oldest sequences employed (Fig. 3-8a). Disregarding for the moment
the decoupling with the GARP sequence during t, it is also a very simple sequence, consisting of
only four pulses. Transverse proton magnetization is excited by the first pulse and is present during
the whole sequence. Without the heteronuclear pulses a 2D J spectrum (15) would result. The
90°(S) pulse turns the carbon "operator” also into the transverse plane. Heteronuclear double- and
zero-quantum coherences (21 ySy) evolve during t). Proton chemical shift is refocussed by the
180° proton pulse during t;. Therefore it evolves during t,-A+A’. Homonuclear J(H,H) couplings
evolve during the whole sequence t;+t,+A+A’, carbon chemical shift and homonuclear carbon-
carbon couplings evolve during t; and the heteronuclear coupling evolves during A and again
during A'+ty. The transfer amplitude of this pulse sequence for a H,C cross peak in a H,C,Hj,Ck
spin system (where j indicates the number of passive proton spins and k the number of passive

carbon spins on the carbon of interest) is therefore:

Sin(TC]HcA) Sin(TCJHc(A"Hz)) HjCOS(KJH‘Hj([1+[2+A+A') chos(TtJC‘thl) exp(iQH(tz-A+A')
cos(€2¢ty)

The heteronuclear zero- and double quantum coherence evolving during 1) is selected by the phase
cycle 0= 0.180. y= 0.0.180.180: receiver phase = 0. 180, 180. 0

Note that suppression of protons not bound to !3C is achieved only after two experiments by
subtraction of unwanted coherences. Without decoupling in ty. the signal that is cancelled by the
phase cycle is at least 200 times stronger than the desired signal given the 1% natural abundance of
}3C and the doublet character of the carbon-bound proton. Therefore the dynamic range of the
digitizer must be high for proton detected heteronuclear spectroscopy of natural abundance
samples. If the desired signal is a factor of 200 smaller than the undesired signal, almost half the
number of bits of a 16 bit digitizer are used for signal that is cancelled away by the phase cycling
procedure (8 bits correspond to a factor of 256). To obtain good subtraction the phases of the
proton pulses are not changed during the sequence. Change of proton phases generally leads to
poorer canccllation of undesired signals because a new equilibrium state is established between
scans.

As we have done in this example we will throughout this chapter represent the state of the spin

system by product operators at crucial points. Phase cycles should be applied in such a way as to
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select the specified transformations. We will denote the phases to be incremented according to the
TPPI or States-Haberkorn-Ruben procedure by ¢.

In the HMQC experiment, heteronuclear decoupling can be applied during t, to gain sensitivity due
to the reduction of the multiplet structure from a doublet to a singlet. The transfer amplitude is

simplified:
sin(tJycA) sin(mycA’) Tjcos(mly wj(t+Ho+A+A")) exp(iQpy(ty-A+AY)) Hycos(mlc ckty) cos(Qet;)

Fourier transformation of the decoupled ‘experiment yields a multiplet as shown schematically in
Fig. 3-9a (echo part). The antiecho multiplet structure is obtained by reflection at-the line O = Qe

In natural abundance samples, the number of multiplet lines is minimal, namely, just the number of
lines in the proton multiplet, irrespective of the size of the heteronuclear coupling. Pure phases can
only approximately be achieved, because the echo and the antiecho part do not exactly match after
folding at w=0 (Fig. 3-9a). The deviation from amplitude modulation in ty is Small if the resolution
1s of the order of, or less than, the width of the proton multiplets. Then one can Fourier transform
an HMQC in the standard way. If the resolution in ®, approaches the width of the proton
multiplets, this recipe is no longer applicable.

The HMQC sequence can be used for transfer via long range heteronuclear couplings. In this so
called HMBC experiment (16) the second refocussing period is normally omitted and no
decoupling is applied. This approach turns out to have a higher signal to noise than the refocused
and o, decoupled HMBC as has been investigated in ref. 17. The HMBC sequence is shown in Fig.
3-8b. The transfer amplitude is identical to the transfer amplitude of the fully coupled HMQC-
experiment with A" = 0. (The evolution of homonuclear couplings of the heterospin is not
considered further here because in fully labeled molecules the transfer via !J couplings 1s much
faster than via heteronuclear long range couplings. making other experimental approaches more

attractive.):
Sil’l(TtJHcA) Sin(T'CJHclz) njCOS(RJH‘Hj([l+tZ+A)) CXp(iQH({z-A)) COS(Qctl).

This gives rise to a schematic multiplet in the echo part as shown in Fig. 3-9b. The difference
between the carbon decoupled HMQC and the HMBC multiplet is the additional convolution of the
2D multiplet by the heteronuclear antiphase splitting Jyc in @y, due to the modulation of the two-
dimensional signal with sin(tJycty). Like in the HMQC experiment, the signal is phase modulated
in t). In addition, in the non-refocussed HMBC there is a large phase gradient in @, due to the
evolution of chemical shift during A. However, if t;M3X is short such that the resolution achieved in
®; is lower than the multiplet width the signal is approximately amplitude modulated in t;.
Therefore the spectrum is usually recorded in the standard way, e.g. with TPPI, and Fourier
transformed in such a way as to obtain pure phases. The w; dimension is then phased to pure

absorption. Since the phasing in , is impossible due to the evolution of homonuclear coupling
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(during A in the non-decoupled and during 2A in the decoupled variant) and chemical shift in A (in
the non-decoupled variant), the absolute value of the signal in @, is taken. This is obtained by
combining the RjR; and the RyI; parts according to: [(RyRp)2+(R1;)2]1/2 (18). The resulting
spectrum has pure absorption phase in @, (X-nucleus) but shows the absolute value of the signal in
@, (!H). The abbreviations R|Rj; and RyI, refer to real (R) and imaginary (I) parts of the spectrum
in ) (index 1) and o, (index 2), respectively.

An experimental spectrum of cyclo-(D-Proé-Phe!l-Thr!0-Ala%-Trp8-Phe-) is shown in Fig. 3-10.
The HMBC experiment can be used to connnect proton spin systems that are interrupted by non-
protonated atoms. In peptides for example, the carbonyl groups constitute such an interruption of
the proton spin system. The detection of cross peaks between the NH;,;,C" and H;,C' permits the
sequential assignment of a sequence of amino acids. This type of sequential assignment method
does not produce non-sequential cross peaks, in contrast to NOE based sequential assignment.
However, the size of the 2J(H,C') coupling constants depends on the conformation (¢ and y angles)
(19).

The HMBC spectrum shown in Fig. 3-10 was aquired with a selective pulse (Gaussian 90° pulse
(20) see also chapter 2 in this volume) in the carbonyl region to avoid folding problems in ®; and
to achieve high resolution in the indirectly sampled frequency domain. A 270° Gaussian pulse (21)
or a G4 Gaussian pulse cascade (22) would be more up to date. In Fig. 3-10 only the echo part of
the spectrum is shown. The sequential assignment of the cyclic hexapeptide is indicated in the
figure (23).

Due to the exp(iQy(t>-A)) factor in the transfer amplitude of the HMBC experiment a large first
order phase correction would be required in ,. Magnitude calculation of the spectrum in @y is
therefore usually performed as described above. However, when a quantitative evaluation of
heteronuclear coupling constants is required, the distorted phases are retained (vide infra).

The abundance of connectivity information available in HMBC spectra is demonstrated (Fig. 3-11)
with another variation of the HMBC experiment applied to a protected dissacharide, Ethyl-6-O-
(2.3.4-tri-O-benzyl-a-L-fucopyranosyh)-(1.6)-3-O-acetyl-4- O-(p-methoxybenzyl)-2-desoxy-2-
phthalimido--thio-B-D-glucopyranoside. Non-selective carbon pulses were used. Folding (see
Folding) was applied to obtain sufficient resolution. The spectrum shows non-protonated carbon
resonances (e.g. the carbonyl carbon of the acetyl group) as well as resonances of protonated
carbons that are detected also in the HSQC-spectrum (Fig. 3-23). Due to the intensity modulation
of the cross peaks in HMBC spectra with sintJycA some connectivities via ey couplings are
missing if 1JcA is close to a multiple of 1. For example the direct connectivity of the CH, of S-
CH>-CHj3 (w) = 66.3 ppm, @, = 2.4 ppm) is missing in the spectrum.

The HMBC spectrum shows the sugar linkage via the glucose-C(6) (0 = 65.8 ppm), fucose-H(1)
(tn = 4.9 ppm) cross peak. The assignment of the benzyl groups can be derived from the O-CH,-
O-CH as well as from the ®-CH,-O-CH cross peaks. The assignment of the benzyl protons and
carbons can be derived from the Co.CH; as well as from the C;,CH; cross peak (Cj, C,, C,, and Cp

for ipso, ortho, meta and para position in the aromatic ring). These cross peaks are indicated in the
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spectrum for the MOBO group. The connectivities within the aromatic ring are derived from the
C,, and Cp resonances in @, observing that cross peaks due to 3J(C,H) couplings are much stronger
than those due to 2J(C,H) couplings in aromatic systems. Note the direct LJ(C,H) as well as remote
3J(C,H) connectivities between ortho protons and ortho carbons, which lead to an apparent triplet
structure of these cross peaks (e.g. at ®; = 61 ppm, @, = 7.1 ppm for the direct Co.H,, (doublet) and
the remote C,.H, peak (singlet)).

In HMQC and in HMBC, the resolution in @y is limited by the proton multiplet width because the
cross peaks are modulated with the homonuclear proton couplings in ty. In addition, for
macromolecules, the heteronuclear zero- and double-quantum coherence containing transverse
proton magnetization relaxes quickly due to the rather short T, of proton (24,25). Both these

problems are solved in the next basic experiment.

3.6.2 HSQC (Heteronuclear Single Quantum Correlation)

The HSQC (26) sequence can be derived from the HMQC sequence by rotating the transverse
proton magnetization to the longitudinal plane at the beginning of t; and then rotating it back to the
transverse plane again after t;. To refocus chemical shift modulation during A, a 180°(1,S) pulse is
introduced in the middle of the each of the two delays A. Because the proton magnetization is
longitudinal during t; no homonuclear J(H,H) couplings evolve during t;. The evolution of
heteronuclear couplings is refocussed by the 180(I) pulse in the middle of ty. The pulse sequence is
shown in Fig. 3-8c).

The transfer amplitude for the desired coherence transfer (proton magnetisation longitudinal during

[] ) 1s:
Sinz(TEJHCIA) ﬂjcos(nJH'HjA) exp(iQle) njCOS[TEJH.Hj(A-Hz)] chos(nJCCk[]) COS(chl)

This formula is only true for a very large difference between J(X.H) and J(H,H), which is the
situation for transfer via 1J(X,H) couplings. If the heteronuclear coupling used for the polarization
transfer is about the same size as the homonuclear coupling. the transfer becomes inefficient due to
the excitation of proton multiple quantum coherences after the second 90°(1) pulse. Therefore, in
contrast to HMQC, HSQC is used only for transfer via !J(H,C) couplings.

The schematic multiplet structure of an HSQC correlation peak is shown in Fig. 3-9b) for a
HCH,H; spin system. The sensitivity of the experiment is comparable to HMQC for transfer via
J(H.X) couplings. The resolution in ®; is no longer limited by the homonuclear proton couplings.
For biomolecules HSQC has a higher signal to noise ratio than HMQC because the fast decay due
to proton transverse relaxation during t; is absent (24,25).

So far we have seen that chemical shift information about a heteronuclear spin can be obtained by

evolution of two types of operators:
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ExperimentlInitial operator  Couplings Relaxation rate
HMQC LSy homonuclear couplings of Iand S 1/T+1/Tyg
HSQC ISy, Sy homonuclear couplings of S 12T 1+ 1/Tog

In the HSQC experiment the heteronuclear chemical shift evolution is obtained from operators of
the type: 2I,S, and S,. The 21,S, antiphase operator relaxes faster than the in phase operator Sy

since the former also decays due to proton longitudinal relaxation. This effect is especially strong in
larger molecules. To circumvent this problem, one may refocus the heteronuclear antiphase
operator prior to ty. This leads to the next experiment, the Double INEPT sequence. Here in-phase

heteronuclear single quantum coherence S, evolves under decoupling of protons during ty:

3.6.3 DOUBLE INEPT

The double INEPT sequence (24,25,28) introduces refocussing and defocussing periods for the
heteronuclear coupling before and after t;. Therefore pure in phase heteronuclear magnetization S,
Sy encodes heteronuclear chemical shifts during ty (Fig. 3-8d). The sequence is applied exclusively
f(;r transfer via 1J couplings for the same reasons cited for the HSQC experiment.

The transfer amplitude of this sequence is:

sinX(mdycA) sin2(mJycAY) cos2(-D(m)- yA") cos(Qcty)  exp(iQyty) Hjcos(nJH’HjA)
njCOS(TCJH‘HjA-}‘[z)

n is the number of protons bound to the heteronucleus. The optimal delays to refocus heteronuclear
antiphase coherence [,Sy before t} and to defocus heteronuclear in-phase coherence after t) depend
on the multiplicity of the heteronucleus. Maximum transfer is obtained with 1/2J. 1/4] and 1/6] for
IS. I,S and I3S moieties. respectively. Consequently the sequence has a signal to noise ratio
identical to HMQC or HSQC only for IS moieties. For low natural abundance nuclei, however, the
transfer efficiency can be improved by incorporating composite bilinear rotations (2).

Since the heteronuclear coherence relaxes during t; only with the heteronuclear transverse
relaxation time T,g Double INEPT is optimal for macromolecules, where proton self relaxation is
fast. Double INEPT is therefore used with advantage for H,N correlations, where NH groups are of
main interest. Figure 3.12 shows the comparison of HMQC (a), HSQC (b) and Double INEPT (c)
cross sections through the 'SN,'H cross peak of GIn74-NH in !5N labeled ribonuclease A.

3.7. Amplitude and Phase Modulation

We want to introduce some additional notions that are frequently used throughout this course:

Consider a spin I, with its characteristic chemical shift 2). Assuming that this spin has an
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interaction with another spin I, with its characteristic chemical shift 2, such that we can transfer
magnetization of spin I} to I,. Now let us consider a pulse sequence that first excites spin I and

then allows for evolution of chemical shift during t;:
Lix > Ijccos(Qgty) + Iy, sin(Qty)

Now we apply the specific mixing scheme that transfers magnetization from I, to I,. There are two
possibilities. Either magnetization is transferred from both magnetization components of Ijtol,or

only from one. We first consider transfer from both components:

Ly > Ipy and

Ily -> Izy

In this case, the following two dimensional FID is obtained after evolution of chemical shift during

& magnetization transfer ty
le -> leCOS(Q][])+I|ySin(Q1[]) -> sz COS(Q](])'FIZ), Siﬂ(Q][l)~>
Iy [cos(€2)t))cos(€25t9)-sin(L2 1) )sin(Q5t5)] + Ipy [sIn(Q21t))cos(Qat7)+cos(Qt))sin(Q515)]

The 2D FID that the phase sensitive receiver records by complex addition of x magnetization plus i
times y-magnetization is therefore given by: exp(iQt;)exp(iQ,t;). Such a 2D FID is said to be
phase modulated in t). because t; enters the FID in t, solely by a phase factor. It yields after
complex Fourier transformation so called mixed phases (a mixture of absorptive and dispersive
signals) in the 2D spectrum. The phase modulated FID cannot be Fourier transformed such that
purc phases result in @) and w» and at the same time the sign of the chemical shift is recognized.
This is undesirable because purely absorptive peaks have minimum linewidth. It is obvious that the
phase modulated signal allows the differentiation of the sign of frequencies in t;. This 1s always the
case 1f the phase modulation is due to the chemical shift. The above mentioned FID
exp(i€2y1))exp(iQ2sty) gives rise to the antiecho part of a spectrum (see Chapter 2 in this volume).
Anticcho pathways are characterized by the fact that the sign of the chemical shift is the same for ty
(+£21) and 15 (+Q)). The echo part of the signal is characterized by the fact that the sign of the
chemical shift is opposite in t, (-Q2)) and in t5 (+Q5): exp(-1£2yt})exp(i€2t,). The echo part of the
spectrum could be obtained in the above sequence by introducing a 180°, pulse before the transfer
of magnetization from I; to I,. The echo part of the signal derives its name from the fact that By
inhomogeneities behave like chemical shift and are refocussed after YD = Ity where (1) is
the gyromagnetic ratio of I . Refocussing of By, inhomogeneities gives rise to the formation of an

echo. There is a product operator basis set that allows to describe echo and antiecho signals in a
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simple way. Using the equations for the evolution of chemical shift for Iy and Iy it is easily found

that the two new operators: I, = [, + ily and I =1, -il, evolve chemical shift in the following way:
Iy > 1, exp(-iQt) and I -> I_ exp(iQt).

The antiecho transfer therefore comes about from I, -> I., whereas the echo transfer originates

from I}, -> 1.

If magnetization is transferred only from either of the two components: Iix to Iy orIjy to Iy, then

the signal that is obtained in the hypothetical experiment described above is given by:

4 magnetization transfer ty
I]X -> I]xCOS(Qlt])"FIly Sin(QII]) -> sz COS(QI[I) ->
Iyx cos(€21t))cos(Q2o1p) + Ipy cos(Qty)sin(Qyty)

The signal the phase sensitive receiver records is now given by cos(£21t))exp(i€2,t5). Now the
amplitude of the FID in t, is modulated by cos(Q,t;). The signal is amplitude modulated in t;. Sign
discrimination is no longer possible since cosine is an even function. Therefore a second
experiment is recorded that modulates the t, FID with sin(€2yt;). This can easily be done by starting
with I}y magnetization instead of I, at the beginning of t;, hence by a phase shift by 90° of the
pulses that preceed the evolution time. The Fourier transformation of these two amplitude
modulated signals yields pure phases in the spectrum.

The reader should note that the two amplitude modulated parts of the spectrum:
cos(£2 1) )exp(i€2-ts) and $in(€2y1))exp(1Q25t5)
can be obtained from the echo and from the antiecho by linear combination and vice versa:

cos(£211))exp(iQ2aty) = (172)[exp(iQt, )exp(iQ312)+exp(-iQIt, Jexp(i€25t5)] and
SIN(E21t)exp(iQsty) = (1720)[exp(iQ, Jexp(i€2aty)-exp(-iQ Jexp(i€25t)]

We will in the following discuss sequences that record FIDs that can be phased to pure absorption

after Fourier transformation by recording separately the echo and the antiecho part.



A 42

Figure Legends

Fig. 3-1:  Representation of the evolution of chemical shift in a vector diagram. a) x-
magnetization evolves under the influence of chemical shift by rotation with frequency Q in
the rotating frame. After a time t, the phase of the magnetization is given by Qt. The
magnetization is composed of the two orthogonal components M, and M. b) Rotation of a
magnetization vector under the action of a pulse. The pulse induces a rotation of the
magnetization about its direction with the frequency yB|. The flip angle B is given by the
duration of the pulse t and the strength of the field: 8 = yByt

Fig. 3-2:  Vector diagram representation of the evolution of coupling of spin I to spin I, in the
rotating frame. The chemical shift is assumed to be zero. The two lines in the spectrum, one
for the spin isomer with I, in the o state and one for I, in the [ state, correspond to two
vectors that rotate in the rotating frame with identical frequency mJ but in opposite directions.
At time zero the two vector components are parallel resulting in full observable
magnetization. At time t they have acquired a phase shift of nJt and -mJt, respectively. The
two parallel vector components I},I5, and I},I,5 are combined to yield the magnetization I,.
The two vectors that lie antiparallel I}l and I1ylop are combined to 2I;yI5;. This product
operator is modulated with sin(mJt).

Fig. 3-3:  Evolution of coupling during a time t starting from antiphase coherence of spin I;. This
state of the spin system contains no observable magnetization at time t=0. Evolution of
coupling according to Fig. 3-2 leads to a refocussing of the two antiphase components and
detectable magnetization again appears. Since the state of the spin system in the vector
diagram at time (=0 is indistinguishable from two magnetization vectors originating from two
spins with a difference in chemical shift of 2rJ that lie in opposite directions a spectrum
results in which the two lines have opposite sign (one line in emission, the other in
absorption).

Fig. 3-4: HXXH spin system: a) Double relayed transter from H to H via the HX, XX and HX
coupling. Since each transfer takes about 1/] the relay transfer: H->C->C->H takes takes
[2(140 Hz)'! + (35 Hz)"!]'! = 42 ms. b) Transfer via the homonuclear coupling of 10 Hz
takes (10Hz)! = 100 ms.

Fig. 3-5:  Building blocks in heteronuclear spectroscopy:

a) Coherence transfer from antiphase [ (21,S;) to antiphase S coherence (21, Sy) is effected by
two 90° pulses on I and S. Sequential application of the pulses creates intermediate
longitudinal two-spin order 2I,S,. b) Reverse coherence transfer from antiphase S coherence
(21,_Sy) to antiphase I coherence (2IyS,_) which is refocussed to in-phase I coherence (Iy) at
the end of A. ¢) Creation of heteronuclear multi quantum coherence (21,S,) by application of
an S pulse to antiphase I magnetization. d) Reverse of ¢)

Fig. 3-6:  180° {mlses in the middle of a delay 2A. The evolution of coupling, chemical shift of H

and chemical shift of C is graphically represented in the manner often used for coherence
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orders. a) with no 180° pulse all three interactions evolve. b) application of a 180°(I) pulse
refocusses chemical shift of I and heteronuclear J(I,S) coupling. c) application of a 180°(S)
pulse refocusses heteronuclear J(I,S) and chemical shift of S, d) application of 180°(L,S)
pulses refocusses chemical shift of I and S but not J(I,S) coupling.

Fig. 3-7: a) Pulse sequence containing two 180°(I) pulses and a 180°(S) pulse. The evolution of
interactions is given below: b) for the heteronuclear 1,S coupling, c¢) for the I chemical shift
and d) for the S chemical shift. e) If all I spins are longitudinal the I chemical shift need not
be taken into account. Then the two I pulses can be concatenated. f) If the chemical shift of S
need not be taken into account, the two proton pulses are concatenated in a different way.

Fig. 3-8:  a) Pulse sequence of the HMQC experiment with refocussing of the proton chemical

ga

shift in t; and decoupling in t,. In absense of the carbon pulses a 2D J resolved experiment
results. The phases ¢ and  are cycled according to 0,180 and 0,0,180,180, respectively. The
receiver phase is cycled accordingly. TPPI, RSH or States-TPPI is performed on ¢. b) Pulse
sequence of the HMBC experiment. Only the refocussing period is missing compared to the
HMQC. Consequently, proton decoupling must be avoided and the active heteronuclear
coupling Is in antiphase. c) Pulse sequence of the HSQC experiment. Defocussing of the
heteronuclear J(I.S) coupling occurs during A. The S-spin antiphase coherence evolves during
t;- The 180° pulse refocusses heteronuclear coupling in t;. The efficiency of the sequence is
independent of the multiplicity. d) Double INEPT sequence with refocussing during A" In
phase heteronuclear magnetization at the beginning of t; evolves under proton decoupling.
Since spin polarization is lost during the Ih->S and S->I, transfer the sequence leads to lower
signal to noise than HSQC/HMQC for multiplicities n>1.

Fig. 3-9:0 u) Schematic multiplet structure in a HMQC experiment. Modulation by the
homonuclear coupling in t; and t5 leads to the tilted multiplet structure in the echo and
anticcho spectra. The two spectra do not match upon folding at @; = 0, which leads to mixed
phases in HMQC. b) HMBC multiplet pattern. In contrast to the HMQC pattern, the HMBC
pattern is  convoluted with an antiphase splitting in > due to the active heteronuclear
coupling. ¢) Multiplet pattern in HSQC and Double INEPT: Modulation with the
homonuclear coupling in w; is removed. Because the echo and antiecho part superimpose
exactly upon folding at ; = 0. spectra with pure phases can be obtained.

Fig. 3-10: HMBC spectrum with a 90° Gaussian carbon pulse of the cyclic hexapeptide cyclo-(D-
Pro®-Phe! I-Thr!0-Ala%-Trp8-Phe’-). The connectivities between the neighboring amino acids
are visible from the HN,, |.C"; cross peaks. A = 70 ms, 128 t; experiments, the Gaussian pulse
had a duration of 3.5 ms. The inserts show the tilted multiplet structure of the W8(H,,C') and
FI(H,.C') cross peaks. .

.3-11: HMBC experiment on Ethyl-6-0-(2,3,4-tri-O-benzyl-a-L-fucopyranosyl)-(1,6)-3-O-
acetyl—4—0-(p—methoxybenzyl)-2—desoxy-2-phthalimido—l-thi0~B—D—glucopyranoside 1A=

Fi

ua

50 ms: non selective pulses were used. The spectral width in w; was limited to 50 ppm. Peaks

with F refer to the fucosyl resonances, MOBO refers to the (p-methoxybenzyl) protecting
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group. The carbons assigned C;, C,, C,, Cp refer to the aromatic carbons of this group. The
protons are refered to as o, o', m, m". 2, 3, and MOBO are the methylene carbons of the
benzyl/methoxybenzyl protection groups at positions 2 and 3 of the fucose and 4 of glucose.
Et-CH3 and Et-CH; refer to the I-thioethyl group of the glucose. The direct CH»-peak of the

ethyl group is missing.

1g. 3-12: Comparison of a) HMQC, b) HSQC, and c¢) Double INEPT at GIn7 of 5N labeled

uQ

Q.

ribonuclease A by taking Q; traces through the respective spectra. The intensity loss of the
HMQC due to the Hy,HN coupling is clearly visible. No relaxation effect is visible at this
molecular weight as an intensity difference between HSQC and Double INEPT.

- 3-13: Four spectra obtained from the pulse sequence of Fig. 3-22 for Ethyl-6-0-(2,3,4-tri-O-
benzyl-o-L-fucopyranosyl)-(1 ,6)-3-0-acetyl-4-O-(p-methoxybenzyl)-2-desoxy-2-
phthalimido-1-thio--D-glucopyranoside L 0 = x-x; ¥ = y,y,-y,-y ensures that the signals
that are folded an odd number of times have inverted sign. a) CH/CH3 "even-folded": positive
peaks in the difference of Fig. 3-22a and Fig. 3-22b. b) CH, "even folded": positive peaks in
the sum of Fig. 3-22a and Fig. 3-22b. ¢) CH/CH3 "odd-folded": negative peaks in the

difference of Fig. 3-22a and Fig. 3-22b. d) CH, "odd folded": negative peaks in the sum of
Fig. 3-22a and Fig. 3-22b.
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H— H
140 Hz ‘ f 140 Hz

——
35Hz

Transfer time: 35 ms

Direct homonuclear Transfer

10 Hz
H —

140 Hz ' 140 Hz

X —X

Transfer time: 100 ms

A 3-4

Double heteronuclear Relay Transfer
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Double INEPT
400 300 200 00, O -0 -200 -300
GIn™ -NH
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Density Matrices:
We have two levels of description for the status of a spin system, the dengity matrix expressed as
cartesan operators, or Sngle element operators or the energy level diagram.

Cartesian Basis Single element basis
ral;l;l

7 X y; r:lailb;l+;l_;

Al

Energy level diagram

— ® B>

B>
Ia Ib I+ I_

® - e Y e

Time evolution of Density Matrices:
The dendty matrix transforms under the Liouville von Neumann equation in the following form:

ir = [H Ny ]
Hamiltonian Operators under which the dendity matrix trandforms are:
Chemicd Shiftt H® =W I, + WS,

Pulsss H™* =g, B, =w,I,.After timet the pulse has aguired the phase: w,t = b . A pulse with
the Hamiltonian: H™'** =g, B,l, =w, |, of durationt istherefore calleda b, (1) pulse.

Scaar Coupling between spinl and S H” = 2pJ,¢l,S,

Transformation of Density Matrices under pulses, chemical shift and coupling for a two spin
system of | and Sin the cartesian operator basis:

Chemical Shift:
|, Ya86® | cosW,t+ 1, SnWt; |, %36® 1, cosWt- |, snWt; |, %$%®1,
S %Y®S, cosWt +S,9n Wyt; S, %Bh®1, cosWit- S snWit; S, %¥%®S,



Pulses:
|, %Y@ 1, |, %¥H® 1, cosb +1,8nb; |, %%I1®1,cosb - 1,snb
S %¥HI®S,; S, %¥® S, cosb +S,snb ; S, %¥F® S, cosb - S,snb

Scdar Coupling:
|, ¥a¥%® 1, cospd st +21 S, snpd ot; |, %%® 1 cospd ¢t - 21,S,snpdgt; |, % %@,
21,S, %%®21 S, cospd st - |, dnpdet; 21,8, %¥®21,S, cospd,gt+ 1, §n pd ¢t

Transformation of Density Matrices under pulses, chemical shift and coupling for a two spin
system of | and Sin the single element operator bass:

Chemical Shift:
|, %@, ™ | %e1 ™ | eI, |, %Eel,
S, %Me®Se™: S HE®Se™ S U S,; S, %S,

Pulses:

(1,e™ +1.¢")snb
IEAZZCIN cosZ%+ I, sn?>- L(le" +1 ¢ )dnb

|, %Y¥® I+0052%+ | e Qn2%+|§(lae” +1,6" )snb

| %Y@ 1. c052%+ |, e'” s'nZ%- IE(Iae'if +1, € )s’n b

Scdar Coupling:
1.S, %%® 1,S e ™ | S, %@ | SePs |, %%U®l,; 1, %%el,
1,S, %%® 1,5,e™s': | S, %u%® | g e



Transformation of Density Matrices under pulses, chemical shift and coupling for a two spin
system of | and Sin the energy level picture:

1S

- > H o =— | Y21 1.
IBR ’blifi (Ql QS)Z wl/2

op>

Emﬁ (QI QS)/Z_ﬂ:J/Z IBor, EPM;(_QI+Q §/2_jﬂ/2

1,S,

jaa>, B ~(Q) +0g)/ 242

The evolution of coherences between the levelsis gven by the energy difference of the levels connected.
The evolution goeslike: e '™ : Eg.

.S, %Y %@ |, e Wiws)

Populations have no energy difference, therefore they are invariant under time evolution.
Pulses can be caculated by looking at the action of a pulse on each of the functionsinvolved in a
coherence. For that we need the transformation of the functions under pulses:

la > ¥%9%®|a >cos%+i|b >s'n%

|b > ¥3®|b >cos%+i|a >s'n%

Thusa b, (1) pulse onto the operator |,S, =|aa ><ba | &fectsthe following transformation:

g +Sae-ilxb —

ei(b/2)(|aa><ba|+|ba><aa|+|ab><bb|+|bb><ab|) |aa >< ba |e-i(b/2)(|aa><ba|+|ba><aa|+|ab><bb|+|bb><ab|)

In order to smplify this expression, we first notice that the the two pairs of operators contained in each

of the exponentials commute:
[laa ><ba |+ |ba ><aa |Jab ><bb |+ |bb ><ab |=0

Dueto thisfact, they can be applied sequentidly:
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ei (b /2)(jaa ><ba |+|ba ><aa |+Jab ><bb |+|bb ><ab |)
i(b/2)(jaa><ba |+|ba ><aa )

e

We cdculate now one of the two expressions:

ei(b /2)(Jab ><bb |+|bb ><ab |)

i(b/2)(jaa><balt|ba><aal)

e
o fi(b/2)(aa ><ba |+|ba ><aa )]
an‘ n!

cos(b /2)(Jaa ><aa |+|ba ><ba |)+isn(b/2)(jaa >< ba |+|ba ><aa |

or in matrix form:

n

cos(b /2)(|laa ><aa |+ |ba >< ba |)+isn(b/2)(aa ><ba |+|ba ><aa|) =
agos(b/2) id9n(b/2) o

Gsin(b/2) cos(b/2) :
¢ 1

: 15

The ordering of the bassfunctionsis aa, ba, ab, bb.
The second rotation matrix can be congiructed in the same way and we find:

cos(b /2)(|lab ><ab |+|bb >< bb |)+isin(b/2)(|ab >< bb |+|bb ><ab |) =
a8 0
$ 1 :
¢ cos(b /2) isin(b/2)~
E isn(b/2) cos(b/2)

Applicationto 1, S, =|aa ><ba | can be obtained now in the following way:

il,b -ilb _
e, §e ™ =
ei(b/2)(|aa><ba|+|ba><aa|+|ab><bb|+|bb><ab|) |aa >< ba |e—i(b/2)(|aa><ba|+|ba><aa|+|ab><bb|+|bb><ab|)
={c, (lab ><ab |+|bb >< bb |) +is, (jab >< bb |+ |bb ><ab |{c, (aa ><aa |+ |ba ><ba |) +is, (aa >< ba |+|ba ><aa )}
laa >< ba |

{c, (lab ><ab |+|bb ><bb |)- is, (jab >< bb |+|bb ><ab |fc, (aa ><aa |+|ba ><ba|)- is, (aa >< ba |+|ba ><aa |}



67

Of al the indicated trangitions, only the ones that carry pa> as , ket” and <ba | as, bra* Cdculation of
the transformation leads to:

1S 1S

Fictitious Two Level Operators:

How do we transfer population on the ab state into the ba state? We can look how we do thisin the
samplest spin system, namely a single spin system and we ask the question, how do we transfer
population on the a date into population on the b gtate. This can be doneby ap pulse aswe know. A

Py puseisgiven by: py = eipI X = ei(p [2)(p><btb><a D. Thus if we want to apply a pulse

. rS .
across a certain trangtion rs, we smply apply a q;s =X = e @ /2)(Ir><sttis><r)) pulse. Here

theflip angleisg. The effect of this pulse will be as known for the single spin operator transformations:

rs ] | FS . rs
153 %9%@ | [ cosq - 117 sing;1 S % 93® 1 S cosgy + 18 sing;1 S % 7@ 11
rs g|r5 . rs .
118 %990 115115 %9740 1S cosq - 1556nq;l 5 %9%:@ 1/Scosq + 11°snq  Eq.[5]
rs . | TS rs .
115 %:92® 115 cosg + 1P sing; 12 %:92:@ 1151 1% %920 1 1S cosg - 18sing
Optimization of Pulse Sequences:

When optimizing pulse sequences one has to digtinguish the following levels:



b)

Optima experimenta implementation of the pulse sequence? This addresses the question whether
the pulse sequence does what it is supposed to do. E.g. off-resonance effects of pulses or
polarization transfer segements, decoupling bandwidth etc. There is a vast body of literature
addressing his problem: eg. broad band decoupling (WALTZ, GARP, WURST), TOCSY
transfer: (CW, MLEV, DIPSl, FLOPSY etc.). Inverson pulses (norma, composite, shaped).
This shdl be mentioned only shortly in this lecture,

Optimal pulse sequence?

Every pulse sequence consists of one or severa transfers of coherences. The question addresses
the problem whether the coherence transfers are optima with respect to sengtivity. This question
can be answered by andysing the bounds of coherence transfer ignoring relaxation. These bounds
will be introduced and examples will be given. It will dso be discussed on severd examples how
to find the optimal pulse sequence.

Optima coherences?

This is perhaps the most fundamental question out of those @)-c). It addresses the question
whether the right coherences are chosen to creste the spectrum. There are severa coherences that
provide the same spectroscopic information but they may giveriseto consderably varying quaity
of spectraeven after optimization according to b) and a).

Bounds and optimal pulse sequences for Hermitian A and C:
The optimization of a dedred coherence trandfer ignoring relaxation requires to find the unitary
transformation U that maximizes a transfer that goes from a coherence A to a coherence C:

AYZ® aC + B Eq. [1]

aisgivenby: a =

Tr{uAau-Ich
Tr{c'c)

Eq. [2]

Let'sassumethat A and C are both hermitian matrices and that we have chosen the eigenbasis of C with
the eigenvaues in descending order. Then the trace is maximized if A is dso diagondized and the
eilgenvalues of A are also sorted in descending order.
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gﬁl 0 0 0 9&5’11 0 0 0 0
0 0 020 C 0 0 -
Tr¢ Fo2 ¢ 22 S=max. Eq. [3]
g 0 0 0 AMé 0 0 0 Cug
IS IS
j be> -
ét-]_ﬁ.?' SR ' ZHB} S_:."L
T do= g
IX/ ” .
|l’1{13-" |(1q.‘.}

Example: INEPT transfer in IS system:

For the INEPT transfer it is possible to transfer completely I, -> S, in an IS spin system, however, thisis
not possible for a 1,S spin syslem where one can achieve |, + |5, -> S,. The question is, whether thisis
afundamenta limitation or whether the INEPT is not optimal.

The matrices for I, and S;in an IS spin system are both diagonalized by a 90, pulse. We ook therefore
forl,and S,

#H5 0 0 0 #H5 0 0 0

N Z:go 05 0 O ;-c:s :go 05 0 O : ol
0 0 -05 0Y “ 60 0 05 07
0 0 0 -O05g 0 0 0 -o055

The eigenvalues are Hlill not yet ordered correctly for S,. If we do this by exchanging theab and theba
populations we obtain:

®5 0 0O 0o &@®5 0 0 09
go 05 0 0 - . go 05 0 0 -
7= _-;Sz: - Eq. [9]
¢o 0 -05 07 ¢o 0 -05 0°
go 0 0 -05; go 0 0 -054
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Obvioudy |, and S, are the same. Therefore the transfer from |, to S, is possible with an =1, thus full
transfer.

Fictitious Two Level Operators:

How do we transfer population on the ab date into the ba state? We can look how we do thisin the
samplest spin sysem, namely a single spin system and we ask the question, how do we transfer
population on the a date into population on the b state. This can be doneby ap pulse aswe know. A
Py pulseis given by: py = eIpI X = ei(p [2)(lp><b+]b><a D. Thus if we want to goply a pulse
across a certain trangtion rs, we smply apply a q;s = eiOII X = ei @ /2)(r ><sf+ls><r]) pulse. Here

theflip angleis q. The effect of this pulse will be as known for the Sngle spin operator transformations.

rs ] | rS ] rs
155 %9%:® 155 cosg - 1S sing;1 %.99.® 115 cosg + 1S sing1 1S %:97.® 118
rs [FS ) rs ]
115 %.92,@ 115115 9, 9%@ 1S cosq - 113snq;1 15 %.92.@ 115 cosq + I°sng  Eq.[5]
rs ] |rs rs .
1y 2. 9%, 1y> cosq + 1P sing; 1 P Y I4® | vy %.92.® | y cogy - 133 sing
With this information, we can now directly write down the pulse sequence for this trandfer |, -> S,

Application of a P )|? b>lba> pulse will effect the desired transfer. The popageator that represents this

pulse is ei(p / 2)(|ab><ba|+|ba><ab|). We now have to trandate
ap ><pa |+|ba ><a Into the cartesan product operators. Thisyi
b b b b |) intoth ' od hisyidds:

a® 0 0 09
001 0s

(ab><ba|+|ba><ab)=g = = T=2IxS+1yS)) Eq. [6]
€ 0 0 op

Thus we have to gpply the following propaggtor:

p)|?b>|ba> _i(p /2)(pb><bal+ba><ab]) _
ei(|o 12)(21xSc+21ySy) _
cip/2)(2l Xsx)ei(|o 12)21Sy)

Eq. [7a]

Eq. [74]
Eq. [7¢]
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The firgt transformation Eq. 7a is a planar coupling Hamiltonian  pJ (1 Sy + | ySy)(ll\]) applied

during duration (1/J). This is indeed an implementation of the heteronuclear polarization transfer. The
planar Hamiltonian pJ (1 Sy + 1Sy is generated from the week coupling Hamiltonian 2pJI , S,

by a multipulse sequence that applies pulses only aong x (e.g. DIPSI-2) and flanking 90, pulses on |
and S. The multipulse sequence generates: pJ (1,S, + | ySy) and the flanking 90, pulseson | and S

rotate thisto pJ (1, Sy + | ySy) ;

ei(p 12)(214Sc+21ySy) _
el(p /2)e-i(p/2)| ye- I(P /Z)Sy (2' ZSZ+2I ySy)ei(p/Z)l ye|(p /Z)Sy

10121y - i(p12)S, ((12)(21,S,+21,S)) i(p 121y (125,

Eq. [8]
Thisyidds the implementation given in Fig. 23).
a) . X 2t -X
H
12 X -X
C
b) X X Y -y C) X XY
| t1 t2 |t t2
X X - -XY -y
13C 13C
d) X 'y e) x tl t2
(I Wl L]
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The second (Eg. 7¢) conssts of two terms. Looking at the firgt of the two we find the transformation of
Eqg. 8:

ei(p/2)(2|XSX):ei(p/Z)e-i(p/2)lye-i(p/2)8y(2|Zsz)ei(pIZ)lyei(p/Z)Sy
J(P/21y i)y
e i(p/2)I Ve i(p /Z)Syei(p /12)(2l ZSZ)GI(IO /2)|yel (P/2)Sy _

90,(1,5)¢ (P29, (1,9) Eq. [9]

The middle tem is free evolution of heeronucdlear coupling during a dday ()L
2pJ(1,S,)(1/2J). Thus the pulse sequence that implements the propagator of Eq. 7c is given by:

90,(1,5)(1/23)90_ (I, S)90,(1,S)(1/23)90. (1, S)

This can be transformed from Fig. 2b) to €) by using the fact that e.g. 90, = 90_, 90, 90,. Furthermore,
z rotations that are before or after the pulse sequence can be introduced and skipped as well.

Example: INEPT transfer in 1>S system:
Let's now look at the |,S case:
Here the matrices are atwice as big:

o
o

o

ol

©
a1

l1z +127 =

1
o
ol
1
o
o
1
o
o

1
H -

DO 1010 40 4010 04O+ O,
1
H

LI B E Y C O A (O O I B e
1

1

©

ol

(DvavaOvaOvaOvaO%
o
a1

LI Y E] Ce] R EE EOE B B E B H @

Application of Eq. [2] to this trandfer yields after reordering of the matrix dements. a=1. The problem
contains symmetry and we can use this symmetry to achieve a smpler notation. The composite spin of 14
and |,iscdled F. Thereisaspin 1 and aspin O multiplicity. The corresponding metrices then become:



~
w

o

0.5
0.5

1
'—\
S ) P W'

ul
Y O P W'

0.5
- 05
- 05
- 05

l1z+ 12, =

1
H

- 0.5,

o

Lo YT XY S P PO .L._.l.

CDvaVOVOVOVOVOVOvaoagA
o
&
1
mm»o»o»o»ououommm%
|

The adering of the levelsis (1,1)a, (1,0)a, (1,-1a, (0,0)a, (1,1)b, (1,0)b, (1,-1)b, (0,0)b, where
(1,2) is the m=1 state of the spin 1 combination of the two spins 1, and 1,. The (0,0) means the m=0
gate of the spin O combination of the two spins. The second polarization state refersto S. The states of
the compodite | spin = 0 can be ignored since they have no population in the initia operator. Also except
for the gpplication of sdective pulses, the | spins will dways be affected in the same way. This however
means that throghout the whole pulse sequence the total | spin does not change. We then are left with
two 6x6 matrices:

o

B o @ 0
¢ 0 - ¢ 05 -
¢ -1 N ¢ 0.5 N
l1,+ 15, = =S, = +
272z =8 1 i%=g - 05 :
¢ 0 : ¢ -05 :
g & 05,
We can obtain now totda trandfer if we apply the following p pulses p !?a >ftb >pl; 1a>|0b> . Thus

we hae to rotae by (p/2f|0a ><1b |+|lb ><0a }  ad
(p/2){]- 1a ><0b |+]|0b ><-1a }. The two rotations affect different levels, therefore they

commute. We note that for a spin 1 the operator F, looks in the following way:

geo J2/12 0 6
Fx=g\/§/2 0 2/2+
S0 J2/12 o

e 2

Thus it connects the O and -1 levels as well as the 1 and O levels. Therefore from analogy with the
previous IS spin system, we arrive a the operator expression that implements the desired pulses:
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H 0 0 0 0 0
© 0 0 212 o o

O 0 0 0 J2/2 07

I 2W2(F. S, +F,S,) = =
(P /2W2(FxSx +FySy) % 2 0 o 0 o
S0 0 42/2 0 o o

0 0 0 0 0

This Hamiltonian is again a planar heteronuclear mixing operaor. It can be implemented by two flanking
90(1S) pulses and a pulse sequence that generates the Hamiltonian pJ(F, S, + Fysy)during atime

(ﬁJ ) ! Thisisthe same sequence as for the IS spin system, however, the ddlay t = (ﬁJ ) Linstead
of t = 371 asinthe case of the IS spin system. It should dso be noted that this pulse sequenceisalittle
bit shorter than the familiar implementation of the INEPT with delayst, = (2)1andt, = (4)L.

Bounds and optimal pulse sequences for non-Hermitian A and C:

In the hermitian case we have obtained the bounds by cadculaing the eigenvdues of the involved
matrices A and C. These eigenvaues are, however, dways O for transfers that interchange operators
that would be sdected by echo gradient sdection. Therefore another bound, the so cdled gradient
bound was developed. So far there are no andyticd expressons for this bound. We just give their
vaues and then try to find implementations of pulse sequences that achieve a certain transfer. Let's look
a the antiphase trandfer in a two spin system: 2S |, shall be transfered to I-. The gradient bound tells
that this transformation should be possible with an a of 1. Indeed, it is possible to accomplish the
following trandfer:

25,-> 1y by a(p/2)S,ly rotetion and
251,-> -1y by a(p/2)Sy 1, rotation.

The two operators commute and therefore one can ether apply them consecutively or smultaneoudy.
You can see that the required trandfers are exactly the same as for the INEPT in the IS spin system.
Therefore the implementation is the same as in Fig. 2b. However, now, only the last 90(S) pulse can be
ommitted yidding the pulse sequencesin Fg. 2f or g.

Now, let us consider the I,S spin system. The maximum achievable transfer is like in the case of the
hermitian operators given by: a= 1. We can again ook at the necessary matrices.
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@ 0020 05 @2 00 0 09
0 0000 O ¢0 0 Y20 0 o0-
%9 0000-22__ % 0 00 0 O
ZFZS: = = -
00000 0f ¢ 0 0 0+2 0+
%0000 07 %% 0o 0 0 0 422
goooooog éoo 0 0 0 0y

Now, let us consider the I,S spin system. We recognize that by a rotation about the trangtions: 2,4 and
3,5 we accomplish the desired transfer. This rotation can again be expressed as.

#® 0 0 0 0 0
© 0 0 212 o o

0 o0 0 0 +2/2 07

| 2W2(F, S, +F,Sy) = =
(P /2W2(FySx +FySy) % Va2 0 o 0 o
S0 0 42/2 0 o o

0 0 0 0 0

Thus we find that the heteronuclear Hartmann Hahn transfer indeed achieves in a two spin system the
desired optimal transfer.

Optimal coherences?

We shdl now discuss the question of choosing optimal coherences for pulse sequences. This question

has become very interesting for large molecules where certain coherences relax much dower than other

coherences. There are essentialy two examples of this approach.

a)  The use of heteronuclear multiple quantum coherences that relax dower than sngle quantum
coherences.

b)  Theuseof angle multiplet components that rdlax much dower than other multiplet components.

Multiple Quantum Coher ences:
We congder only molecules that are in the dow tumbling regime. Then we can neglect al spectra
dengtiesto the relaxation except for J0). For the dipolar relaxation double commutator, we find:

2
a'rb (0]
dr /dt = - Qg—sghj [2S,0,,[2S),,r ] XO0) = 0if [2S,,r ]=0.

4pris g
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It is obvious that the only coherences that commute with this double commutator are aso those that do
not evolve heteronuclear coupling. Thus, zmagnetization or zero or double quantum coherences. This
approach has been successfully used for proteins, especidly with partid deuteration and RNA. A
selection of respective papers can be found in the papers accompanying this lecture,

Differential Line Widthsin Submultiplets (TROSY):

The concept that a multiplet has the same linewidth is no longer true as soon as molecules become
larger. Let's look again at an IS spins system. There will be relaxation due to the dipolar interaction and
there will be relaxation due to the anisotropy of the transverse spin. Thus there will be autocorrelated

relaxation due to the dipolar interaction: (- r’rb)% S,1, = bpS, |, and due to the anisotropy
s
of the S spin: %(S |- S~)9sBp S, = byS;. In addition there will be the cross term due to the

cross correlation of the two interactions. If we look at the individua multiplet components: S 12 and
S 1P we find the following expressions:

(S"a)' =[bD|2821[bD|zSz,S_|a]]+[basz,[baSZ,S'la]] 2c
ot i 1= b o5, 512 o -
=512 (b%/4+b§ +bpba (3c0sq - 1),2)2_;

(s 1°) =bot,S 1,55 12 ]+ s, Joas, 517 %

(+ o155, [0S,.5 12|+ ]0aS, Jop 1,5, b]|):—5L(30082q . 1)3 c

=5 P (b[% /4+b2 - byba (3cofq - 1)/2)2[—5C

Obvioudy, if (b[% /4+Db3 £ byb, (3cosq - 1)/2) is 0, the linewicth can be very small. For a
NH bond, the nitrogen as well as the hydrogen CSA tensor are dmost exactly digned along the NH
bond.  Therefore (300@ g-1)/2 is dose to 1 This mens tha

(bl%/4+ba2- bp ba(3c0s°q - 1)/2):0.

Thus the optima coherences ae S | b and 17 SP . Therefore tranfer sequences that transfer
between those coherences in an optimal way are desirable.



There are two implementations that can achieve this trandfer so far published in the literature. The firgt is
agan the planar heteronuclear Hartmann Hahn mixing: It implements a rotation about the 2,3 trangtion.
This rotation achieves the fallowing trandfer:

SI1Pwe I P sI123e |I°
st1Pye1TsP st1a e | TSR

These trandformations will create a spectrum that contains in the antiecho and echo part the following

peaks.
Antiecho Echo

CY

W(S) WS)

e D

W) W)

Of course either one of the peaks will be broad and it is not optimd to have it in the spectrum.

This problem is solved in the TROSY sequence. Here one can show that the following transformations
are achieved:

SIPwe 1"s?; 512 e 172

SH1P e 1P sT12 e |- P

I S” Hli [ BB

|eefi= i —

.!I T g (L
_/— P —— [ : S'_\ IR
. E [
V] l L oo .
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This produces the following spectrum:
x 1oy

H_]

1

t2

13

]
c_ 1

Antiecho

WS)

e D

W)

W)

Echo

W)

Thisisoptima in combination with gradients to select exactly one line only.

WS)





