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Density Matrices: 
We have two levels of description for the status of a spin system, the density matrix expressed as 
cartesian operators, or single element operators or the energy level diagram. 
 
Cartesian Basis  Single element basis   

;;;,1: zyx IIIρ    ;;;,: −+ IIII βαρ  
 
Energy level diagram 

 
Time evolution of Density Matrices: 
The density matrix transforms under the Liouville von Neumann equation in the following form: 
 

[ ]ρρ ,Hi =
•

 

 

Hamiltonian Operators under which the density matrix transforms are: 
 
Chemical Shift: zSzI

CS SIH Ω+Ω=  
 
Pulses: xIxI

pulse IIBH ωγ == 1 . After time τ the pulse has aquired the phase: βτω =I . A pulse with 

the Hamiltonian: xIxI
pulse IIBH ωγ == 1  of duration τ is therefore called a )(Ixβ  pulse. 

 
Scalar Coupling between spin I and S: zzIS

J SIJH π2=  
 
Transformation of Density Matrices under pulses, chemical shift and coupling for a two spin 
system of I and S in the cartesian operator basis: 
 
Chemical Shift: 

tItII IyIx
H

x

CS

Ω+Ω → sincos ; tItII IxIy
H

y

CS

Ω−Ω → sincos ; z
H

z II
CS

 →  
tStSS SySx

H
x

CS

Ω+Ω → sincos ; tStIS SxSy
H

y

CS

Ω−Ω → sincos ; z
H

z SS
CS

 →  

Iα Iβ I+ I−
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Pulses: 

x
I

x II x → )(β ; βββ sincos)(
zy

I
y III x + → ; βββ sincos)(

zz
I

z III x − →  

x
S

x SS x  → )(β ; βββ sincos)(
zy

S
y SSS x + → ; βββ sincos)(

zz
S

z SSS x − →  
 
Scalar Coupling: 

tJSItJII ISzyISx
H

x

J

ππ sin2cos +→ ; tJSItJII ISzxISy
H

y

J

ππ sin2cos −→ ; z
H

z II
J

→  
tJItJSISI ISxISzy

H
zy

J

ππ sincos22 −→ ; tJItJSISI ISyISzx
H

zx

J

ππ sincos22 +→  
 
Transformation of Density Matrices under pulses, chemical shift and coupling for a two spin 
system of I and S in the single element operator basis: 
 
Chemical Shift: 

tiH I
CS

eII Ω−
++  → ; tiH I

CS

eII Ω+
−−  → ; αα II

CSH → ; ββ II
CSH →  

tiH S
CS

eSS Ω−
++  → ; tiH S

CS

eSS Ω+
−− → ; αα SS

CSH → ; ββ SS
CSH →  

 
Pulses: 

( ) β
ββ φφ

βα
β

α
φ sin

22
sin

2
cos 22)( iiI eIeI

i
III −

−
+ +++ →   

( ) β
ββ φφ

αβ
β

β
φ sin

22
sin

2
cos 22)( iiI eIeI

i
III −

−
+ +−+ →  

( ) β
ββ φ

β
φ

α
φβφ sin

22
sin

2
cos 222)( iiiI eIeI

i
eIII −

−++ +++ →  

( ) β
ββ φ

β
φ

α
φβφ sin

22
sin

2
cos 222)( iiiI eIeI

i
eIII +−+ → −−

+−−  

Scalar Coupling: 
tJiH SI

J

eSISI π
αα

−
++ → ; tJiH SI

J

eSISI π
αα −− → ; αα II

JH→ ; ββ II
JH→  

tJiH SI
J

eSISI π
ββ

+
++ → ; tJiH SI

J

eSISI π
ββ

−
−− →  

 



 65

Transformation of Density Matrices under pulses, chemical shift and coupling for a two spin 
system of I and S in the energy level picture: 
 
 
 

 
The evolution of coherences between the levels is given by the energy difference of the levels connected. 
The evolution goes like: Etie ∆− : E.g. 
 

tJiHH SII
CSJ

eSISI )( π
αα

+Ω−
+

+
+  →  

 
Populations have no energy difference, therefore they are invariant under time evolution. 
Pulses can be calculated by looking at the action of a pulse on each of the functions involved in a 
coherence. For that we need the transformation of the functions under pulses: 
 

2
sin|

2
cos||

β
β

β
αα β >+>→> ix   

2
sin|

2
cos||

β
α

β
ββ β >+>→> ix  

Thus a )(Ixβ  pulse onto the operator || βαααα ><=+ SI  effects the following transformation: 

( ) ( )||||||||)2/(||||||||)2/( || αβββββαβααβαβαααβαβββββαβααβαβαααβ

β
α

β

βααα ><+><+><+><−><+><+><+><

−
+

><

=
ii

iIiI

ee

eSIe xx

 

In order to simplify this expression, we first notice that the the two pairs of operators contained in each 
of the exponentials commute: 
[ ] 0|||||,||| =><+><><+>< αβββββαβααβαβααα  

Due to this fact, they can be applied sequentially: 

IS

SI

SI

SI

SI
I+Sα
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( )

( ) ( )||||)2/(||||)2/(

||||||||)2/(

αβββββαββααβαβαααβ

αβββββαβααβαβαααβ

><+><><+><

><+><+><+>< =
ii

i

ee

e
 

We calculate now one of the two expressions: 
 

( )

( )[ ]

( ) ( )||||)2/sin(||||)2/cos(
!

||||)2/(

||||)2/(

ααβαβαααββαβαααααβ

ααβαβαααβ

ααβαβαααβ

><+><+><+><

=
><+><

=

∑

><+><

i
n

i

e

n

n

i

 

or in matrix form:  
 

( ) ( )



















=><+><+><+><

1

1
)2/cos()2/sin(

)2/sin()2/cos(

||||)2/sin(||||)2/cos(

ββ
ββ

ααβαβαααββαβαααααβ

i

i

i

The ordering of the basis functions is: αα, βα, αβ, ββ. 
The second rotation matrix can be constructed in the same way and we find:  
 

( ) ( )



















=><+><+><+><

)2/cos()2/sin(

)2/sin()2/cos(
1

1

||||)2/sin(||||)2/cos(

ββ
ββ

αβββββαββββββαβαββ

i

i

i

  

 
Application to || βαααα ><=+ SI  can be obtained now in the following way: 

( ) ( )||||||||)2/(||||||||)2/( || αβββββαβααβαβαααβαβββββαβααβαβαααβ

β
α

β

βααα ><+><+><+><−><+><+><+><

−
+

><

=
ii

iIiI

ee

eSIe xx

 

( ) ( ){ } ( ) ( ){ }|||||||||||||||| ααβαβαααβαβααααααβββββαβββββαβαβ ββββ ><+><+><+><><+><+><+><= iscisc  

|| βααα ><  
( ) ( ){ } ( ) ( ){ }|||||||||||||||| ααβαβαααβαβααααααβββββαβββββαβαβ ββββ ><+><−><+><><+><−><+>< iscisc  
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Of all the indicated transitions, only the ones that carry |αα> as „ket“ and <βα | as „bra“ Calculation of 
the transformation leads to:  
 

 
 
 
 
Fictitious Two Level Operators: 
How do we transfer population on the  αβ state into the βα state? We can look how we do this in the 
simplest spin system, namely a single spin system and we ask the question, how do we transfer 
population on the α state into population on the β  state. This can be done by  a π  pulse as we know. A 

πx pulse is given by: |)||)(|2/( αββαπππ ><+><== iIi
x ee x . Thus if we want to apply a pulse 

across a certain transition rs, we simply apply a |)||)(|2/( rssriIirs
x ee

rs
x ><+><== θθθ  pulse. Here 

the flip angle is θ. The effect of this pulse will be as known for the single spin operator transformations: 
 

rs
z

Irs
z

rs
x

rs
z

Irs
z

rs
y

rs
z

Irs
z IIIIIIII

rs
z

rs
y

rs
x  →+ →− → θθθ θθθθ ;sincos;sincos  

θθθθ θθθ sincos;sincos; rs
y

rs
x

Irs
x

rs
z

rs
x

Irs
x

rs
x

Irs
x IIIIIIII

rs
z

rs
yrs

x + →− → →      Eq. [5] 

θθθθ θθθ sincos;;sincos rs
x

rs
y

Irs
y

rs
y

Irs
y

rs
z

rs
y

Irs
y IIIIIIII

rs
z

rs
y

rs
x − → →+ →  

 
Optimization of Pulse Sequences: 
 
When optimizing pulse sequences one has to distinguish the following levels: 

IS IS

I
βI

+
xSα I+Sα

I

I

I

−

β

α

S

S

S

α

α

α
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a) Optimal experimental implementation of the pulse sequence? This addresses the question whether 

the pulse sequence does what it is supposed to do. E.g. off-resonance effects of pulses or 
polarization transfer segements, decoupling bandwidth etc. There is a vast body of  literature 
addressing this problem: e.g. broad band decoupling (WALTZ, GARP, WURST), TOCSY 
transfer: (CW, MLEV, DIPSI, FLOPSY etc.). Inversion pulses (normal, composite, shaped). 
This shall be mentioned only shortly in this lecture. 

 
b) Optimal pulse sequence?  
 Every pulse sequence consists of one or several transfers of coherences. The question addresses 

the problem whether the coherence transfers are optimal with respect to sensitivity. This question 
can be answered by analysing the bounds of coherence transfer ignoring relaxation. These bounds 
will be introduced and examples will be given. It will also be discussed on several examples how 
to find the optimal pulse sequence. 

 
c) Optimal coherences?  
 This is perhaps the most fundamental question out of those a)-c). It addresses the question 

whether the right coherences are chosen to create the spectrum. There are several coherences that 
provide the same spectroscopic information but they may give rise to  considerably varying quality 
of spectra even after optimization according to b) and a). 

 
Bounds and optimal pulse sequences for Hermitian A and C: 
The optimization of a desired coherence transfer ignoring relaxation requires to find the unitary 
transformation U that maximizes a transfer that goes from a coherence A to a coherence C: 
 

BaCA U +→           Eq. [1] 
 

a is given by: 
}{

}{
†

†1

CCTr

CUAUTr
a

−
=         Eq. [2] 

 
Let's assume that A and C are both hermitian matrices and that we have chosen the eigenbasis of C with 
the eigenvalues in descending order. Then the trace is maximized if A is also diagonalized and the 
eigenvalues of A are also sorted in descending order. 
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=





































44

33

22

11

44

33

22

11

000
000
000
000

000
000
000
000

C
C

C
C

A
A

A
A

Tr max.   Eq. [3] 

 
 

 
Example: INEPT transfer in IS system:  
For the INEPT transfer it is possible to transfer completely Ix -> Sx in an IS spin system, however, this is 
not possible for a I2S spin system where one can achieve I1x + I2x -> Sx. The question is, whether this is 
a fundamental limitation or whether the INEPT is not optimal.  
The matrices for Ix and Sx in an IS spin system are both diagonalized by a 90y pulse. We look therefore 
for Iz and Sz: 
 



















−

−
==



















−
−

==

5.0000
05.000

005.00
0005.0

;

5.0000
05.000

005.00
0005.0

zz SCIA  Eq. [4] 

 
 
The eigenvalues are still not yet ordered correctly for Sz. If we do this by exchanging the αβ and the βα 
populations we obtain: 
 



















−
−

=



















−
−

=

5.0000
05.000

005.00
0005.0

;

5.0000
05.000

005.00
0005.0

'
zz SI    Eq. [5] 
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Obviously Iz and S'z are the same. Therefore the transfer from Iz to Sz is possible with an a=1, thus full 
transfer.  
 
Fictitious Two Level Operators: 
How do we transfer population on the  αβ state into the βα state? We can look how we do this in the 
simplest spin system, namely a single spin system and we ask the question, how do we transfer 
population on the α state into population on the β  state. This can be done by  a π  pulse as we know. A 

πx pulse is given by: |)||)(|2/( αββαπππ ><+><== iIi
x ee x . Thus if we want to apply a pulse 

across a certain transition rs, we simply apply a |)||)(|2/( rssriIirs
x ee

rs
x ><+><== θθθ  pulse. Here 

the flip angle is θ. The effect of this pulse will be as known for the single spin operator transformations: 
 

rs
z

Irs
z

rs
x

rs
z

Irs
z

rs
y

rs
z

Irs
z IIIIIIII

rs
z

rs
y

rs
x  →+ →− → θθθ θθθθ ;sincos;sincos  

θθθθ θθθ sincos;sincos; rs
y

rs
x

Irs
x

rs
z

rs
x

Irs
x

rs
x

Irs
x IIIIIIII

rs
z

rs
yrs

x + →− → →      Eq. [5] 

θθθθ θθθ sincos;;sincos rs
x

rs
y

Irs
y

rs
y

Irs
y

rs
z

rs
y

Irs
y IIIIIIII

rs
z

rs
y

rs
x − → →+ →  

 
With this information, we can now directly write down the pulse sequence for this transfer Iz -> Sz. 

Application of a >> βααβπ ||
x  pulse will effect the desired transfer. The popagator that represents this 

pulse is: |)||)(|2/( αββαβααβπ ><+><ie . We now have to translate 
|)||(| αββαβααβ ><+><  into the cartesian product operators. This yields:  

 

|)||(| αββαβααβ ><+>< = )(2

0000
0010

0100
0000

yyxx SISI +=



















   Eq. [6] 

 
Thus we have to apply the following propagator:  
 

>> βααβπ ||
x = |)||)(|2/( αββαβααβπ ><+><ie =      Eq. [7a] 

)22)(2/( yyxx SISIi
e

+π
=         Eq. [7a] 

)2)2/()2)(2/( yyxx SIiSIi ee
ππ         Eq. [7c] 
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The first transformation Eq. 7a is a planar coupling Hamiltonian  )/1)(( JSISIJ yyxx +π applied 

during duration (1/J). This is indeed an implementation of the heteronuclear polarization transfer. The 
planar Hamiltonian )( yyxx SISIJ +π  is generated from the weak coupling Hamiltonian zzSJIπ2  

by a multipulse sequence that applies pulses only along x (e.g. DIPSI-2) and flanking 90y pulses on I 
and S. The multipulse sequence generates:  )( yyzz SISIJ +π  and the flanking 90y pulses on I and S 

rotate this to )( yyxx SISIJ +π : 

 
)22)(2/( yyxx SISIi

e
+π

= 
ySiyIi

yyzz
ySiyIi

eeSISIeeie
)2/()2/()2/()2/(

)22()2/(
ππππ

π +
−−

 

= yyyyzzyy SiIiSISIiSiIi
eeeee

)2/()2/()22)(2/()2/()2/( πππππ +−−
   

             Eq. [8] 
 
This yields the implementation given in Fig. 2a). 

b) c)
1H

13C

τ1 τ1

τ1
τ1

τ2

τ2

τ2

τ2

-xx

x

y

y-x -y

-y

-y

1H
13C

-xx y

y-x

d)
-y

-y

-y

1
H

13C

x z

z -z

e) -y

-y

1H
13

C

x

x

a)
1H

13
C

2τ -xx

x -x
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The second (Eq. 7c) consists of two terms. Looking at the first of the two we find the transformation of 
Eq. 8: 
 

)2)(2/( xx SIie π =
ySiyIi

zz
ySiyIi

eeSIeeie
)2/()2/()2/()2/(

)2()2/(
ππππ

π
−−

 

= yyzzyy SiIiSIiSiIi
eeeee

)2/()2/()2)(2/()2/()2/( πππππ −−
=

),(90),(90 )2)(2/( SIeSI y
SIi

y
zz

−
π        Eq. [9] 

 
 The middle term is free evolution of heteronuclear coupling during a delay (2J)-1: 

)2/1)((2 JSIJ zzπ . Thus the pulse sequence that implements the propagator of Eq. 7c is given by: 

),(90)2/1)(,(90),(90)2/1)(,(90 SIJSISIJSI xxyy −−  

This can be transformed from Fig. 2b) to e) by using the fact that e.g. 90y = 90-z 90x 90z. Furthermore, 
z rotations that are before or after the pulse sequence can be introduced and skipped as well. 
 
Example: INEPT transfer in I2S system:  
Let's now look at the I2S case: 
Here the matrices are a twice as big: 
 































−
−

−
−

=































−

−
=+

5.0

5.0
5.0

5.0

5.0
5.0

5.0

5.0

;

1

0
0

1

1
0

0

1

21 zzz SII
 

 
Application of Eq. [2] to this transfer yields after reordering of the matrix elements: a=1. The problem 
contains symmetry and we can use this symmetry to achieve a simpler notation. The composite spin of I1 
and  I2 is called F. There is a spin 1 and a spin 0 multiplicity. The corresponding matrices then become: 
 

ySiyIi
ee

)2/()2/( ππ
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





























−
−

−
−

=































−

−

=+

5.0

5.0
5.0

5.0

5.0
5.0

5.0

5.0

;

0

1
0

1

0
1

0

1

21 zzz SII

 
The ordering of the levels is: (1,1)α, (1,0)α, (1,-1)α, (0,0)α, (1,1)β , (1,0)β, (1,-1)β, (0,0)β, where 
(1,1) is the m=1 state of the spin 1 combination of the two spins I1 and  I2. The (0,0) means the m=0 
state of the spin 0 combination of the two spins. The second polarization state refers to S. The states of 
the composite I spin = 0 can be ignored since they have no population in the initial operator. Also except 
for the application of selective pulses, the I spins will always be affected in the same way. This however 
means that throghout the whole pulse sequence the total I spin does not change. We then are left with 
two 6x6 matrices: 
 

























−
−

−
=

























−

−
=+

5.0
5.0

5.0
5.0

5.0
5.0

;

1
0

1
1

0
1

21 zzz SII
 

 

We can obtain now total transfer if we apply the following π  pulses: >>−>> βαβα ππ 0|1|1|0|
xx . Thus 

we have to rotate by:  { }|01||10|)2/( αββαπ ><+><  and  
{ }|10||01|)2/( αββαπ −><+><− . The two rotations affect different levels, therefore they 

commute. We note that for a spin 1 the operator Fx looks in the following way: 
 

















=
02/20

2/202/2
02/20

xF  

 
Thus it connects the 0 and -1 levels as well as the 1 and 0 levels. Therefore from analogy with the 
previous IS spin system, we arrive at the operator expression that implements the desired pulses: 
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;
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This Hamiltonian is again a planar heteronuclear mixing operator. It can be implemented by two flanking 
90(IS) pulses and a pulse sequence that generates the Hamiltonian )( yyxx SFSFJ +π during a time 

( ) 12 −J . This is the same sequence as for the IS spin system, however, the delay τ = ( ) 12 −J  instead 

of τ = 1−J  as in the case of the IS spin system. It should also be noted that this pulse sequence is a little 
bit shorter than the familiar implementation of the INEPT with delays τ1 = (2J)-1 and τ2 = (4J)-1. 
 
Bounds and optimal pulse sequences for non-Hermitian A and C: 
In the hermitian case we have obtained the bounds by calculating the eigenvalues of the involved 
matrices A and C. These eigenvalues are, however, always 0 for transfers that interchange operators 
that would be selected by echo gradient selection. Therefore another bound, the so called gradient 
bound was developed. So far there are no analytical expressions for this bound. We just give their 
values and then try to find implementations of pulse sequences that achieve a certain transfer. Let's look 
at the antiphase transfer in a two spin system: 2S−Iz shall be transfered to I−. The gradient bound tells 
that this transformation should be possible with an a of 1. Indeed, it is possible to accomplish the 
following transfer: 
 
2SxIz -> Iy by a (π/2)SxIx rotation and  
2SyIz -> -Ix by a (π/2)SyIy rotation. 
 
The two operators commute and therefore one can either apply them consecutively or simultaneously. 
You can see that the required transfers are exactly the same as for the INEPT in the IS spin system. 
Therefore the implementation is the same as in Fig. 2b. However, now, only the last 90(S) pulse can be 
ommitted yielding the pulse sequences in Fig. 2f or g. 
 
Now, let us consider the I2S spin system. The maximum achievable transfer is like in the case of the 
hermitian operators given by: a = 1. We can again look at the necessary matrices: 
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Now, let us consider the I2S spin system. We recognize that by a rotation about the transitions: 2,4 and 
3,5 we accomplish the desired transfer. This rotation can again be expressed as: 
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 Thus we find that the heteronuclear Hartmann Hahn transfer indeed achieves in a two spin system the 
desired optimal transfer. 
 
Optimal coherences?  
We shall now discuss the question of choosing optimal coherences for pulse sequences. This question 
has become very interesting for large molecules where certain coherences relax much slower than other 
coherences. There are essentially two examples of this approach.  
a)  The use of heteronuclear multiple quantum coherences that relax slower than single quantum 

coherences.  
b)  The use of single multiplet components that relax much slower than other multiplet components. 
 
Multiple Quantum Coherences:  
We consider only molecules that are in the slow tumbling regime. Then we can neglect all spectral 
densities to the relaxation except for J(0). For the dipolar relaxation double commutator, we find: 
 

dρ/dt = − 

2

3
0

4 










IS

S

r

I

π

γγµ h
[2SzIz,[2SzIz,ρ] J(0) = 0 if [2SzIz,ρ]=0.  
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It is obvious that the only coherences that commute with this double commutator are also those that do 
not evolve heteronuclear coupling. Thus, z-magnetization or zero or double quantum coherences. This 
approach has been successfully used for proteins, especially with partial deuteration and RNA. A 
selection of respective papers can be found in the papers accompanying this lecture. 
 
Differential Line Widths in Submultiplets (TROSY):  
The concept that  a multiplet has the same linewidth is no longer true as soon as molecules become 
larger. Let's look again at an IS spins system. There will be relaxation due to the dipolar interaction and 
there will be relaxation due to the anisotropy of the transverse spin. Thus there will be autocorrelated 

relaxation due to the dipolar interaction: ( )
30

4 IS

S

r

I

π

γγµ h− zz IS  = zzD ISb  and due to the anisotropy 

of the S spin: 0||3
1 )( BSγσσ ⊥− zS  = zaSb . In addition there will be the cross term due to the 

cross correlation of the two interactions. If we look at the individual multiplet components: S−Iα and 
S−Iβ we find the following expressions: 

 

( ) [ ][ ] [ ][ ]ααα ISSbSbISSIbSIbIS zazazzDzzD
−−•− += ,,,,   

5
2 cτ

 

 ( [ ][ ] [ ][ ]αα ISSIbSbISSbSIb zzDzazazzD
−− ++ ,,,, ) ( ) cτθ 21cos3

5
1 2 −  

 ( )
5

2
2/)1cos3(4/ 222 c

aDaD bbbbIS
τ

θα −++= −  

( ) [ ][ ] [ ][ ]βββ ISSbSbISSIbSIbIS zazazzDzzD
−−•− += ,,,,   

5
2 cτ

 

 ( [ ][ ] [ ][ ]ββ ISSIbSbISSbSIb zzDzazazzD
−− ++ ,,,, ) ( ) cτθ 21cos3

5
1 2 −  

 ( )
5

2
2/)1cos3(4/ 222 c

aDaD bbbbIS
τ

θβ −−+= −  

 

Obviously, if  ( )2/)1cos3(4/ 222 −±+ θaDaD bbbb   is 0, the linewidth can be very small. For a 

NH bond, the nitrogen as well as the hydrogen CSA tensor are almost exactly aligned along the NH 

bond. Therefore 2/)1cos3( 2 −θ  is close to 1. This means that 

( ) 02/)1cos3(4/ 222 =−−+ θaDaD bbbb . 

Thus the optimal coherences are: βIS− and βSI − . Therefore transfer sequences that transfer 
between those coherences in an optimal way are desirable. 
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There are two implementations that can achieve this transfer so far published in the literature. The first is 
again the planar heteronuclear Hartmann Hahn mixing: It implements a rotation about the 2,3 transition. 
This rotation achieves the following transfer: 
 

ββ SIIS −− → ; αα SIIS −− →  
ββ SIIS ++ → ; αα SIIS ++ →  

 
These transformations will create a spectrum that contains in the antiecho and echo part the following 
peaks: 

Ω(S) 

Ω(I) 

EchoAntiecho

Ω(S) 

Ω(I) 

α

β

 
 
Of course either one of the peaks will be broad and it is not optimal to have it in the spectrum. 
This problem is solved in the TROSY sequence. Here one can show that the following transformations 
are achieved: 
 

ββ SIIS −− → ; αα SIIS +− →  
ββ SIIS ++ → ; αα SIIS −+ →  

 

 
 



 78

 
This produces the following spectrum: 

Ω(S) 

Ω(I) 

α

EchoAntiecho

Ω(S) 

Ω(I) 

β

Ω(I) 

τ1 τ2-y

-y

1
H

13C

x

x

 
This is optimal in combination with gradients to select exactly one line only. 




