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I .  Introduction 

This paper deals with the behavior of a relatively simple 
system which interacts weakly with a  more complicated 
system acting  as  a  temperature  bath. A typical example 
is a nuclear spin system contained within, and interacting 
with, a solid or liquid. Theconventional theory of transition 
probabilities' is applicable to such a system, but yields only 
information about  the  rate of change of the probability 
amplitude of a state of the system, assuming that  the 
phases of the states of the system are unknown or  random. 

For a complete quantum mechanical description of a 
system one must use the density matrix formalism? The 
conventional  theory of transition probabilities assumes 
that  the off-diagonal elements of the density matrix are 
zero, and gives only the  rate of change of the diagonal 

1 elements. For a conzplere description of the motion of the 
system one must also consider the  rate  of change of the 
off-diagonal elements of the density matrix, and  abandon 
the  assumption (equivalent to  the  random phase  assump- 
tion) that these elements are zero. 

Spin systems are unusual in that they can readily be 
prepared in such a way that they must be described by a 
density matrix with significant off-diagonal elements; for 
this reason  a  theory of this type is useful in dealing with 

i such systems. Wangsness and Bloch3 have developed the 
theory for single spins and Bloch4 has extended this theory 
to fairly general systems. The Wangsness-Bloch theory is 
mathematically similar to  the conventional theory of transi- 
tion probabilities, but assumes that only the temperature 
bath,  rather than  the whole system, is characterized by 

*I'his aork was started t< hile the author  was ;It Harvard t:rrlrersity, and was 
t h e n  partially  supported  by  Joint Serbices Contract Njori-76, I'roject Order 1. 

Abstract: A general  procedure is given for finding the 
equation of motion of the  density  matrix of a system  in con- 
tact with a thermal  bath, as for  example a nuclear  spin 
system weakly coupled to a crystal lattice. The  thermal 
bath  is treated both classically and  quantum mechanically, 
and  the theory is similar to,  and a generalization of, con- 
ventional theories of time  proportional  transition prob- 
abilities. Relaxation of the system by the  thermal bath  is 
expressed by a linear  matrix  operator,  and  it is stressed that 
elements of this  operator  can  be  regarded as secular  or non- 
secular  perturbations on the equation  of  motion and  can 
be treated accordingly. When  the motion of the system is 
slow compared to that of the  thermal  bath,  the equation of 
motion can  be expressed  in an operator  form which is inde- 
pendent of  representation. If  the system has a time-dependent 
Hamiltonian which varies slowly compared to  the motion of 
the  thermal  bath,  the  same  equation of motion is obeyed and 
the system is  relaxed by the bath  toward a Boltzmann 
distribution with respect to  its  instantaneous  Hamiltonian. 
If $he time  variation of the  Hamiltonian is more  rapid, 
higher order  corrections  to  the equation of motion  must be 
applied. The theory  is  applied to spin-lattice relaxation of a 
coupled nuclear  spin  system  in a metal,  for  arbitrary  ex- 
ternally applied  fixed  magnetic field. 

random phases of its quantum states  (diagonal density 
matrix). Fano6  has shown how to obtain the Wangsness- 
Bloch theory  in an elegant and general form. 

The Wangsness-Bloch theory  has several limitations. 
I t  is expressed jn a  representation in  which the energies of 
both the system and  thermal bath are diagonal. I f  the 
thermal bath is a complicated thing, like a liquid, it  will  be 
impossible to solve its  Hamiltonian, and therefore impos- 
sible to evaluate the relaxation  constants which come out 
of the Wangsness-Bloch theory. The effect  of the thermal 
bath can nevertheless be estimated in many cases from the 
classical mean-square size of its interaction with the system 
and  the  rate of the  statistical  fluctuations of this inter- 
action  (correlation time). This  point of view was developed 
by Bloembergen, Purcell, and Pound6 for  the case of 
nuclear spins in a liquid, relaxed by the fluctuating mag- 
netic fields  of other magnetic moments on nearby molecules 
in  the liquid. The same  method can be applied to other 
problems in magnetic resonance.', *. In Section 11 of this 
paper we  give a general formulation of such a theory and 19 
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c- 

obtain  the density matrix equation of motion of a system We consider an ensemble of systems each with Hamil- 
relaxed by a  randomly fluctuating perturbation. This for- tonian 
malism differs from the previous theories of this type only hE+fiG(t) 
in  that we explicitly consider the off-diagonal elements of (2.1) 

the density matrix, whereas previous theories dealt with E is time-independent and  has eigenfunctions $,, $a, $-,, 
the rate of change of the diagonal elements (which are etc., with eigenvalues a, @, y, etc., respectively. Tn general 
identical with the probability amplitudes)” or were some- the wave function of each member of the ensemble can be 
what less explicit, general and exact in their treatment of written 
the off-diagonal density matrix elementsx, 

sentation diagonal with respect to  the Hamiltonian of the We define the density matrices 
Since the Wangsness-Bloch theory is expressed in  a repre- 

~ = ~ , c U ~ , = ~ u a a e - i a t ~ , .  (2.2) 

system being relaxed, it is also necessary to solve this 
Hamiltonian  before applying the theory. In many cases 
of interest this is impossible, even though it is possible to 
make  a  reasonable  assumption about  the  state of the 
system  (i.e. that it is in a canonical  distribution with 
respect to its Hamiltonian or  to some other observable). 
This difficulty cannot in general be avoided, but it turns 
out that if the  motion of the thermal bath is rapid com- 
pared to  that of the system it relaxes, the equation of 
motion can be recast in operator  form. Such a form is 
useful because the physical quantities of interest  in deter- 
mining the state of the system are usually traces (diagonal 
sums) of operators, which can be evaluated in any con- 
venient representation. To get the operator form of the 
density matrix equation of motion it must be noted that 
an energy selection rule occurring in the earlier work of 
Wangsness and Bloch is superfluous (see Sections 11, I l l ) .  

Another limitation of the Wangsness-Bloch theory is 
that it  is applicable only when the Hamiltonian of the 
system is time-independent, or contains only a small time- 
dependent part. This limitation  can be removed if the 
Hamiltonian varies sufficiently  slowly compared to the 
thermal bath. If the time-variation of the Hamiltonian is 
not sufficiently slow, corrections must be applied to  the 
equation of motion. In Section 1V we outline  a method of 
obtaining these corrections. 

The present theory, like the usual time-proportional 
transition probability theory and the Wangsness-Bloch 
theory, is a weak interaction or weak collision theory. I f  
relaxation takes place through strong collisions, each of 
which changes the  state of the system by a  large amount, 
the present theory would not apply, since it would diverge 
when carried to higher orders of approximation. 

While this paper was in preparation, the writer learned 
that F. Bloch had independently obtained  some of the 
results of Sections 111 and IV by a somewhat different 
method.‘” In Appendix A we discuss the similarities and 
differences between Bloch’s work and our own. 

I 

II. Random perturbation 

We first treat  the relaxation of a system by a random semi- 
classical perturbation. Besides being useful for getting 
qualitative results when the temperature bath is compli- 
cated,  this section also provides a relatively simple intro- 
duction to some of the ideas in Section 111. The present 
section is a generalization of the  paper of Solomons on two- 

20 spin systems in liquids. 

U , d = { C d A C m ) ;  (2.3) 

uan,*-(ua,tua)=~na,e~(~-~’)~. (2.4) 

Here { ) denotes an average over the ensemble, and  the 
dagger denotes complex conjugate. u is the  usualY density 
matrix in the Schroedinger representation, and u* is the 
density matrix in the Heisenberg representation with re- 
spect to E (interaction representation). We use u rather 
than p to emphasize that u is the density matrix of only 
part of the system, and does not provide any  information 
about the  temperature bath. 

G(t) is a Hermitian perturbation which is random in 
time” and is responsible for the relaxation. G(t) is assumed 
to be different for each member of the ensemble. For the 
purpose of this paper it will be sufficient to know the cor- 
relation matrix of G :  

f ,sa.p(r)= (G,p(t) Gd@’i-(t“)) .  (2.5) 

We assume P and (G)  are independent of time t ,  which is 
equivalent to assuming that  the external system or bath 
which  gives rise to G(t) is stationary  in  the statistical sense. 
For simplicity we assume ! G )  = O ;  if this is not so, we can 
redefine E to include (G).  It is assumed that f ( a ) = O  and 
P(T) = P( - T ) ,  and the  correlation time T~ is defined by the 
condition that P(T)<<P(O) if r>>rc. Later we  will see that 
rC must be small compared to  the relaxation time due to 
the  perturbation C(t). 

The  state of a member of the ensemble at a  time f is 
given by a set of complex numbers u,(t); at a later time 
t+At the a,(t+At) can  be  expanded in the usual time- 
dependent perturbation theory expansion: 

u,(t+At) =X:naa(n’(t+At), (2.6) 

where ~,(~)(t+At)=a,(t);  

a,(+’)(t+At)= -iZB ua(n)(t’)G,a(f’)ei(,-8)t’~t’. (2.7) l+At 
The density matrix is given to second order by 

u,,t*(t+At)=a,,,*(/) 

+ { ~,~(‘)+(t+At)~~(t)+a,~t(t)~,(’)(t+At) 
+a,.(’) t(t+At)u,(”(t+At)+u~/t(t)a,(~)(t+A~) 

+a,t(?’t(t+At)a,(t) ) . (2.8) 
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The integration interval At  in (2.7) must be much greater 
than rC but much less than the time in which the a ,  and u* 
change appreciably. This requirement permits us to make 
the expansions (2.6) and (2.8) but prevents us from  apply- 
ing the theory to strong-collision phenomena (since rC is 
the length of a single collision and At>>rc). 

The first first-order term  in (2.8) is 

( a,J(’lt(t+At)a,(t) )= 

&s~‘+’~apt ( t )a , ( f )G, ,~ t ( t ’ )  ) ei(8-a’)f’dt’. (2.9) 

The a,(t) are  not necessarily statistically independent of 
G(t), but may depend in fact on the value of G for all time 
less than t.  G(t’), however, is statistically independent of 
G(t), and  thus of the a,(t), for t’-t>>rC, by the definition 
of r c .  

t 

Thus 

( aat(t)a,(t)cd~at(t’>) %,@* (G,,p+(t’) ) =o, (2.10) 

provided t’-t>>Tc. Since the latter  condition  holds over 
most of the interval of integration, (2.9) is zero to a good 
approximation and  can be neglected. The other first ordcr 
term is similarly negligible. 

This  argument is hardly  rigorous or quantitative, since 
it is possible that these terms are not negligible compared 
to  the second order terms discussed below. Clearly (2.10) 
is correct  to first order in G and (2.9) is independent of 
At  (for At>>rc) and is also non-zero only in second order 
in G. It is probable, therefore, that we are correct in  ig- 
noring these terms. The quantum-mechanical assumption 
of random phase for  the  bath, introduced  in  the next  sec- 
tion, is probably  related to  the assumption used here, that 
these first order terms can be neglected. 

We now consider the second order terms in (2.8). Again 
using the fact that  the a,(t) are statistically independent of 
G(t)  over most of the  range of integration, it is straight- 
forward to show that these terms are linear in u, and  are 
given by 

g,,,*@)(t+At)=At zpp,ei(*-“”8+8’)i “BB’*(t) 
(2.1 1) 

X [ u , , ~ a p ~ + U p ~ a , ~ , - ~ a ’ P ‘ ~ : r U Y Y a a - - 6 , p  z ? u p ~ m , y y l ,  

where 

x ( (~ i (a - -8 - -a ’ - ta ’ ) (A t“r ) - l ) / i (~ -~-~‘+P’ ) }dT .  (2.12) 

In (2.12) it is assumed that  the frequency difference 
a-P-a’+@’ is not zero; if it is zero the indeterminate ex- 
pression in the curly brackets is replaced by  At--7. To get 
(2.1 1) we introduced  the variable of integration -7 =t‘-t” 
and used the assumptions that G(t) is Hermitian and P(T) 
is an even function of r .  The procedure is similar to  that 
used  by Abragam and Pound’ to evaluate  transition  prob- 

abilities for a similar system; therefore we give only an 
outline of the calculation in Appendix B below. 

We  now consider the  evaluation of (2.12). We first dis- 
cuss those U a a j a p  for which 

(a-P-a’+P’)T,.<<l. (2.13) 

For such terms we can ignore the -7 occurring in the ex- 
pression inside the curly brackets in (2.12), because the 
integrand is large only for -7 < rc. For the same reason, and 
because At>>r,, we can extend the range of integration to 
infinity. Thus we get 

lJ, , ,par={ (ei(,--a“o’+p’)Al-l)/i(u.-P-a’+P’)At1 

X ~ m c ~ ( 8 ’ - “ ~ ’ ~ P , p , , a , ( - 7 ) ~ i . .  (2.14) 

As before, if a-P-a’+P’ is zero  the indeterminate ex- 
pression in curly brackets in (2.14) is replaced by unity. 
The most important  terms of this type are those of the 
form Uaapa and Uapap. 

The terms of (2.12) for which (2.13) does not hold are 
small compared to those for which (2.13) does hold. 
For such terms (a  -P -a’+P’)At>>l becauseAt>>r,.. There- 
fore  the expression in the brace in (2.1 1) is of order 
1 / (a  -P -a’+P’)At in magnitude, and these terms are less 
than -7JAt times those satisfying (2.13). These terms can 
therefore be neglected. 

We now assert that within the same approximation  (that 
is, of order T,/At) our expression for  the density matrix 
at time t+At agrees with that predicted by the following 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Again, the expression in the curly brackets is replaced by 
At, if a-a’-p+P’ is zero. 

Equation (2.18) agrees with the previously obtained 
expression for a*(t+Af), accurate to second order in G, 
except for  those  terms in the sum over and P’ for which 
(2.13) does not hold. By the same argument used previously 
in connection with such terms, they are less than -7JAt 
times the  other terms in (2.18), and therefore negligible. 
Thus  the solution of (2.15) agrees approximately with thc 
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correct density matrix, and (2.15) can be regarded as  the sidered only the secular elements of the relaxation matrix, 
approximate equation of motion of u*. The equation of for which a-a’-P’+P=O. Bloch’s most  recent paper,”’ 
motion  in the Schroedinger representation  then follows however, considers both  the secular and nonsecular ele- 
from (2.15) and (2.4): ments of R .  

du,,,/dt=i(a’-a)u,,~+Zpp~R,,~sp~  up,^. 
In almost every problem of interest,  relaxation  takes 

(2’19) place through the action of only a relatively few time- 
The imaginary  term in (2.19) describes the unperturbed 

motion of the system as determined by its  Hamiltonian E. 
The matrix R describes the relaxation of the system by 
the statistical perturbation G(t). It will be called the relaxa- 
tion matrix. The element R,,pp is simply the transition 
probability from  state p to  state a. It is easy to verify that 
u remains Hermitian with unit trace as a result of the 
equation of motion (2.19). 

Since the density matrix of the system must not change 
by much during  the time At we must have 

l/Ra,~,qp~>>At>>r,. (2.20) 

(2.20) gives the condition of validity of the  present  theory. 
We previously ignored terms of order r,/At. Because of 

(2.20) we can  make  this quantity  approach Rr,, which is 
apparently the lower limit of the  error in the equation of 
motion (2.19). 

It is important  to remember that those  terms of  the 
relaxation matrix Rna,pp, for which a-a’-P+P’ is not 
zero are in general ineffective in the relaxation process. 
This  can  be seen from the first order solution (2.18) of 
the density matrix  equation of motion. If one regards the 
relaxation term of (2.19) as a small perturbation  on  the 
equation of motion, one is reminded of a similar situation 
in  the perturbation theory of the Schroedinger equation. 
In that case, a perturbation (or  matrix element of a per- 
turbation) does not on the average affect the wave function 
unless it connects eigenstates of the Hamiltonian having 
the same energy (more precisely, the eigenstates must have 
energies differing by not  more  than  the  order of magnitude 
of the  perturbation itself). Such a perturbation  or matrix 
element is called secular. In  the present case, elements of 
the  relaxation  matrix for which a-a’#p-fl’ are equiv- 
alent  in  their general effectiveness to non-secular perturba- 
tions or matrix elements in perturbation theory. They con- 
nect elements of u having different unperturbed  time de- 
pendences, namely ei(a-a’)f  and ei(B-@’)t. Since a  relaxation 
matrix element connecting these terms is time-independent, 
its effect tends to average out over a  period of time 
1 / I  (a -a’) - (p  -p’) 1 .  This will be true, however, only if the 
density matrix is unperturbed by relaxation  during this 
time; i.e. only if 

R,,~pp’<</a-a’--P+P’/. (2.21) 

Therefore, terms of the relaxation  matrix for which (2.19) 
holds are nonsecular perturbations  on  the equation of 
motion of u, and can be ignored. On the  other  hand, these 
terms  can  be included if it is convenient to  do so, because 
by the same  argument  their presence will not be felt in the 
behavior of the system. This  fact will be useful later when 
we treat  the case of short correlation time of the th.erma1 
bath. 

22 In their earlier work, Wangsness and Bloch3B con- 

dependent  perturbations.  A nuclear spin in a liquid, for 
example, can be regarded  as relaxed by a fluctuating mag- 
netic field having only three  independent (x, y ,  and z )  
components.6 In such  a case we can write the interaction 
C(t) as 

G,,,(t) =2qH“(t)K,,fq. (2.22) 

For a nuclear spin in a liquid, the H q  are  the three com- 
ponents of fluctuating magnetic field, and  the K q  are  the 
x, y ,  and z components of the magnetic moment operator. 
In general, the H y  are real,  randomly varying functions of 
time having correlation functions (H*(t)Hq’(t-r) ) and gen- 
eralized spectral densities defined  by 

k , , t ( ~ ) = : J . ~  d r (  Hq( t )HY’( t - r )  ) eiwr.  (2.23) 
-m 

The K q  must  be  Hermitian. 
The representation of G in (2.22) may appear  to be a 

needless complication, but actually it is frequently a sim- 
plification because there are usually fewer Hq(t )  than 
G,,t(t), and frequently the H q  are statistically independent 
(if kyqt(w)=O, H q  and Hq‘ are statistically independent). 
Sometimes it is more convenient to write the summation 
(2.22) in such a way that  the Hq are complex, rather  than 
real. In  order  that G be  Hermitian, it is then necessary 
that  the terms of the sum (2.22) occur in mutually adjoint 
pairs. Such a  convention is used by Bloembergen’” in his 
application of the present theory to  the relaxation of a 
two-spin 4 system in  a molecule executing hindered rota- 
tion. 

The relaxation matrix is still given  by (2.16), with 

Jau*bp*(w) =Zy,~K,,~qKp~pq’k,y~(w). (2.24) 

It is a consequence of (2.19) that u approaches  a state 
corresponding to equal probability for all states (u diag- 
onal, with all elements equal).13 This follows because the 
transition probabilities Ramps between states a and P are 
equal for transitions  in either direction: 

Ran8s= R p p a a .  (2.25) 

Actually, we know that u will approach  its true thermal 
equilibrium value 

u(T)=Cexp(-fiA/kT), (2.26) 

where Cis a  normalization constant such that 2,u,,(T) = 1 ,  
and T is the temperature of the thermal bath giving rise 
to G(t). This  fact was lost in this theory  apparently because 
G(r) was regarded as predetermined independent of the 
adt ) .  

In Section I11 we  will show, using a different model, 
that if u=u(T)  the density matrix will remain unchanged; 
i.e. the system is in  thermal equilibrium with the bath.14 
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same result should follow from a sufficiently detailed 
classical calculation, taking  the state of the thermal bath 
as well as that of the system into account. 

Since the theory of this section leads to the prediction 
of an  approach  to equal  populations of all states (infinite 
temperature of the system), the  fact of approach  to  the 
correct  thermal equilibrium state must be introduced  here 
as an  ad hoc  assumption. The simplest way to do this is 
to replace u by u-u(T) in the equation of motion (2.19). 
In Section 111 we show that this is correct only in the high 
temperature limit and  that in general one must replace 
k,,,,(w) in (2.24) by 

j qq , (w)  = k , , , , ( ~ ) e - ” ~ / ~ ~ T .  (2.27) 

Short  Correlation Time 

If  we have the condition 

(oc--PlT,.<<l, (2.28) 

satisfied for all non-zero elements of Gep(t), then all the 
spectral densities occurring  in (2.19), and defined by (2.17) 
or (2.23), are equal to their  zero  frequency values: 

k , , , , ~ ( w ) ~ k ~ , ~ l , ( 0 )  =jqq,(0) if W T , ~ .  (2.29) 

Equation (2.29) follows from (2.23) because the integrand 
in (2.23) is small for T>T,, and exp i w ~ ~ g l .  

Using (2.24) and (2.29) in (2.16) and (2.19), and re- 
placing u by u -dT) as mentioned previously and justified 
in Section 111, we have, finally, an  operator equation of 
motion  for the density matrix: 

du/dt= -i[E,~]”z,,f[Ky,[K9’,  ~-~‘“’]]k,,,~(0). (2.30) 

The virtue of (2.30)  is that it is independent of the repre- 
sentation used. As a result, in many cases it is unnecessary 
to solve the  unperturbed  Hamiltonian E because the  ob- 
servable quantities required are diagonal sums of operators 
which are independent of representation. To get  (2.30) we 
included all the nonsecular terms of the relaxation matrix, 
but  as discussed previously these have no average effect 
on  the behavior of u.  

For many purposes it is useful to use the fact that 

k,,,(O) = M o l e  ( ( f W *  ) T c ,  (2.31) 

where 7, is the correlation time of H p  alone. This point of 
view has been developed by Pines and Slichter.* 

Finally we may remark  that  it is easy to show that if E 
is time-dependent (and is still identical for every member 
of the ensemble), the relaxation will be unaffected, and 
(2.19) and (2.30)  will still hold, provided the change in E 
in time At is small compared to E. This  can be shown by 
working in a representation in which E(r), the instantane- 
ous Hamiltonian, is diagonal. 

The requirement that E vary only slightly in time At 
means that either the  total time varying part of E be small 
compared to E (as is usually the case in magnetic reso- 
nance, in which the rf field is much smaller than the  dc 
magnetic field), or  that (since dt>>T,) 

Equation (2.32) relates the magnitudes of the  operators 
E and dEJdt. The magnitude of E does not mean here the 
total energy (which  is arbitrary),  but  rather  the order of 
magnitude of  the difference between diagonal elements of 
E corresponding to states connected by elements of G and 
dE/dt. Similarly, the magnitude of dEjdt is the  order of 
magnitude of the difference between such diagonal ele- 
ments of dE/dt, or  the  order of magnitude of the off- 
diagonal elements of dEJdt, whichever is larger. 

In Section IV we consider the problem of a time-de- 
pendent Hamiltonian from a different point of view. 

111. Dynamical interaction  with a thermal 
bath 

We now consider the behavior of a system with the Ham- 
iltonian E, loosely coupled by a time-independent pertur- 
bation G to a temperature bath or crystal lattice with 
Hamiltonian F (henceforth we  will use the words system 
and bath in this sense only). This  treatment is the same as 
that in  Bloch’s paper4 except for  the discussions of pseudo- 
stationary perturbations  on  the system, non-secular relaxa- 
tion terms, and  the case of short correlation time. The 
results are similar to those of Section 11. For these reasons 
we  will merely outline the calculation and give its results. 
The reader is referred to Appendix C and  to the  papers of 
Wangsness and Bloch3, for details of the  method. 

The  total Hamiltonian is: 

X=hE+hF+hG.  (3.1) 

By definition, 

[ E,F] =o. (3.2) 

We assume tbr  the time being that E is time-independent. 
We work in a representation in which Eand  Fare diagonal; 
the eigenfunctions of F are denoted by their eigenvalues 
.fand a degeneracy parameter u. The eigenvalues of E are 
denoted by a,  /3, and y, and we can ignore possible degen- 
eracy in these eigenvalues. The  state of the system plus 
thermal  bath is now described by the density matrix 
P a j u a ’ f ‘ t r ’ .  

In analogy to (2.22), it is convenient to write the  per- 
turbation G as a sum of products of two operators in- 
volving the system alone or  the  bath alone: 

Gaf( ,e* ! r&~ =X:qKaa~qH! .u~~u~‘I .  (3.3) 

The properties of the bath are characterized by quantum 
analogues of the spectral densities’” ,jcl,,8(w) introduced in 
Section 11. The calculation outlined below shows that 
these are given quantum mechanically by 

j<,,/?(w) =J dJ’ [B ,dP( f )  
-m 

XH,.,-,,,,f,,~~Hj,~,i-,)~,4’su(f-w)s~,(f)l. (3.4) 

Here v.(f) is the density of states of F, with degeneracy 23 
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parameter u, per unit range of the  eigenvaluef, and P ( f ’ )  is 
given by 

P ( f )  =exp( - hf;/kT)/B,/T.jexp( - tif’/kT) (3.5) 

We define the  characteristic frequency w* of  the bath, 
equivalent1“ to of Section 11, by the  requirement that, 
for all q, q’, w ,  and w’, 

j , I , I r (w)~j , lc I t (w’)  if Iw-w’I <w*.  (3.6) 

Note  that  hw*<kT, which follows from (3.5) and (3.6) 
and  the fact that P ( f )  is large only for f within k T  of the 
lowest eigenvalue of F. 

We wish to find the equation of motion of the system, 
described by the reduced matrix  (“distribution matrix””) 

G a d  = z/u Pa,/iLa’/r. (3.7) 

The ensemble-average value of any system-observable rep- 
resented by the  operator 0 is Z a a ~ O a a ~ u o r ~ o r .  

The equation of motion of u is obtained by solving 
Schroedinger’s equation to second order in G, for a  time 
t+At, assuming that  at time t the total density matrix p 
is approximated with sufficient accuracy by a density 
matrix of the following form: 

P a r u a l / ’ a ’ = u a a , ( t ) P ( . ~ ) 6 / 1 , 6 , , , ~ , .  (3.8) 

This density matrix implies that  the thermal bath is actually 
in a state corresponding to thermal equilibrium, and the 
state of the system is completely described by uaa,(f). 

Starting with (3.8) at time t, Schroedinger’s equation 
predicts that p assumes a mixed character  for time greater 
than t [that is, it  cannot be separated into a  product of a 
system density matrix u and a  thermal  bath density matrix, 
as in (3.8)]. However, the behavior of the reduced matrix 
u, defined  by  (3.7), can be described by a first order differ- 
ential equation, within a  certain order of approximation 
discussed below. It is then assumed that this equation of 
motion for cr holds for all time, regardless of the past 
history of the system, provided the  bath  remains at  thermal 
equilibrium. In other  words, at  the end of the interval 
t+At it is again assumed that the total density matrix p 
can be adequately  approximated by  (3.8) [with u(t) replaced 
by u(t+At)]. This is equivalent to re-randomizing the state 
of  the  thermal  bath  at time t+At  and is a frequently used 
procedure in the theory of irreversible processes. I t  leads 
to seemingly irreversible behavior of the system even 
though Schroedinger’s equation is time-reversible. 

This calculation differs from Wangsness and Bloch’s only 
in that At (corresponding to their t )  is restricted only by 
the condition At>>r,=w*-l. Wangsness and Bloch make 
an additional  requirement  corresponding to Ar>>\a--oc‘l-l, 
where a and CY‘ are any two states of the system connected 
by G. 

In this way, we get an equation of motion of the fol- 
lowing form: 

d~/r~t=[~(t+At)-u(t)]/At=i[u,E+M+N]+Ru. (3.9) 

We now discuss this equation term by term; details of its 
calculation are outlined in Appendix C .  

The operator M is  given by 24 
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M = B , K q  B J ~ H , ~ J ~ ~ P ( ~ ) .  (3.10) 

M represents the effect of the first order  stationary pertur- 
bation on  the system. In nuclear spin systems it gives 
rise to chemical shifts. As with any  perturbation, off- 
diagonal elements Maat can be ignored only if they connect 
states of different energy: i.e. if 

Mma’<<la-a’l. (3.11) 

The  operator N represents the effect of  the second order 
stationary  perturbation by G and is  given  by 

N,ar=~,,,I,yKayqKyafq’ 

.J:_ d~jj,, ,(-w)/a(:rr+tn”y-w) (3.12) 

If Ia-yl <w* for  any two states a and y connected by G, 
or  ifj,,,(w)fO only for lwl>>la-yl, N can be approximated 
by 

N =  - Z , , , , ~ q K q f ~ ~ w j ~ i , , ~ ( w ) / a ~ .  (3.13) 

(3.13) is the form of second order perturbation one gets by 
regarding the K T  as fixed parameters  rather  than  operators 
in (3.3), and calculating the average second order pertur- 
bation of (3.3) on  the lattice or bath. The present analysis 
shows that,  as  one might expect, this is justified only if the 
motion of the system is much less rapid than  that of the 
bath with which it interacts. The appearance of the spectral 
density in N is interesting and probably significant. 

An example of the type of perturbation represented by 
N is indirect nuclear spin coupling via the electronic spins 
in a molecule or solid.’7. 18 

The term Ru in (3.9) describes the  relaxation of the 
system by the  bath 

( R ~ ) a a ~ = Z p p ~ R a a ~ p p  u p @ ‘ .  (3.14) 

In this case the relaxation  matrix R is  given  by 

R a a ~ ~ ~ ~ = ~ ~ q ~ ( K a p q K p ~ a ~ ” ’ ~ j r i u ~ ( ~ - P ) + j ~ r i ~ ( ~ ’ - P ’ ) 1  

-6,B ~rKB’r“Kra,qljqu,(P’--y)efi(B’-Y)Ik7’ 

- I ~ ~ , B ,  ~rKarqKrp”ljnq,(P-y)eli(B-r)lk”J. (3.15) 

Actually, only those terms R , , ~ p p  for which 
a-a ’ -P+P’=O are given by (3.15), and their  evaluation 
is identical to  that of time-proportional  transition 
probabilities.’ Evaluation of those  terms  for which 
a-a‘-/3+P’#O is somewhat more complicated; integrals 
must be evaluated which contain logarithmic singularities, 
but these can be dealt with simply by taking  Cauchy princi- 
pal values. The resulting terms of R are multiplied by a 
factor like the brace in (2.14). If ia-a’-@+p’lAt>>l, these 
terms are small, but can be  regarded  as resulting from 
non-secular perturbations on  the equation of motion, as 
discussed in more  detail in Section 11. These non-secular 
terms,  as given by  (3.15), can be included in the equation 
of motion if it is convenient to  do so. 



To evaluate the terms of the  relaxation matrix (3.15) it 
is assumed that  the spectral density j<,,,(w) is a  constant 
over a  range of w equal to IjAt. This is necessary because 
the integrals involved have integrands with kernels of 
width Atp1. The  error introduced in this way  is of the  order 
of (w*Af)-I times R or N .  In this case (2.20) is required  for 
the same  reason as in Section 11, so that  the minimum 
error in  (3.15) is of the order of R / w * ,  and (3.9) can be 
regarded as  accurate to within this order of magnitude. 

It is easily  verified that, as is expected, 

Z : ~ R ~ ~ l ~ ~ e x p [ - h h P / k T ] = 0 .  (3.16) 

This means that if the system is in a state corresponding 
to thermal  equilibrium, it will remain in that state.14 

We now examine the range of validity of (3.9). The 
required condition analogous to (2.20) is 

M, N,  R<<w*<kTlh. (3.17) 

I n  (3.17) the symbols M ,  N ,  R refer to  the size of the off- 
diagonal elements of these matrices, and (for M, N )  the 
differences between the diagonal elements of states  con- 
nected by the matrices M ,  N ,  and R. If R e m * ,  the be- 
havior of the system becomes difficult to predict; Kubo 
and Tomitalg have treated this situation for  the case of a 
nuclear or electronic spin system. 

We also  have  a requirement that 

M ,  NKE. (3.18) 

(3.18) assures us that the Boltzmann factors  occurring in 
(3.15) are approximately correct. If (3.18)  is violated, it 
would be reasonable to replace the Boltzmann factors  in 
(3.1 5)  by those with respect to the  Hamiltonian E+M+N, 
but it has  not been shown explicitly that this is correct. 

There  does  not seem to be any requirement similar to 
(3.17) and (3.18) on E versus R, provided all elements of 
R,  except perhaps  those obeying (2.21), are included in the 
equation of motion. 

We have assumed so far in this section that E is time- 
independent. I f  E varies slowly  with time, the remarks at  
the end of Section I 1  apply  here  also. Relaxation tends to 
make the density matrix  approach  the  thermal equilibrium 
density matrix corresponding to the  instantaneous  Ham- 
iltonian. 

High Temperature and Short Correlation Time 

We now suppose that  the condition 

la-a’l<<kT/A, (3.19) 

is satisfied for all a and a‘ connected by G and dEldt. We 
also assume that 

u - - d ~ ) < < a ( ~ ) .  (3.20) 

(3.20)  will almost always be a consequence of (3.19), unless 
the system is prepared in some unusual way, and u-u(T) 
will ordinarily be of the order of hla -a’l/kT. 

Since R d T )  = O  we can replace Ra by R ( u - d T ’ )  in (3.9). 
Having  done this, we can replace the j J w )  by k,,,(w), 
defined in this case by  (2.25) and (3.4). By so doing we 
introduce  an  error which is second order in hla-a‘l/kT, 

and  thus negligible. This yields an equation equivalent to 
(2.19)  with u replaced by u - d T ) ,  as mentioned in Section 
11. 

I f  we make the  further assumption of short correlation 
time, 

(a-a’(<<w*<kT/h, (3.21) 

we can  replace the k,,,(w) by kqJ0) ,  and we immediately 
get the expected result (2.30) ,with Ereplaced by E+M+N. 

If it happens that instead of (3.21) we have ( a - a ’ ( N w * ,  
kT/h it may be possible to expand the Boltzmann factors 
and spectral densities in  (3.15) in a power series in w .  This 
will be possible if thej,,,(w) are analytic for w less than or 
equal to all the frequency differences occurring in (3.15). 
Each term in the power series can then be written in 
operator  form, so that  the equation of motion can again 
be written in operator form provided the series converges. 
This  method is used in  the next section. 

IV. Time-Dependent  Hamiltonian 

The previous sections dealt with the problem of relaxation 
of a system whose Hamiltonian is stationary or nearly 
stationary  in time. In this section we consider the same 
problem with a time-dependent Hamiltonian by including 
explicitly and  quantum mechanically in our Hamiltonian 
the device (oscillator, power supply, and/or experimenter) 
which  gives rise to  the time dependence of the Hamiltonian. 
This procedure is somewhat more satisfying than assuming 
an a-priori time-dependent Hamiltonian,  and it also en- 
ables us to get higher order corrections in dE/dt to  the 
equation of motion. 

We will use the  phrase external device to denote the 
source of the time dependence of the Hamiltonian. The 
external device  is assumed to have a  Hamiltonian hD with 
eigenvalues fid. Without loss of generality we ignore pos- 
sible degeneracy of the eigenvalues of D .  The  total Hamil- 
tonian E in (3.9) is now replaced by 

E‘=Eo+E,I+D. (4.1) 

Eo is the time-independent part of the Hamiltonian of the 
system. D commutes with Eo and the Kq, and GI is a 
coupling operator which does not commute with E,, D,  or 
the Kg. We work in a  representation in which D and Eo 
are diagonal. For simplicity we assume that 

( & l ) a d a ’ d ’ = X a n ’ Y d d ’ .  (4.2) 

Here a and a’ are  the eigenvalues of Eo. X is a system- 
observable and Y is an external device-observable. In gen- 
eral, E ,  will actually be a sum of terms of the form (4.2), 
and it is easy to extend the theory in that case. 

We use the density matrix X to describe the system plus 
external device. The system is described by the reduced 
matrix 

u a a ’ = z d X n d a ‘ d .  (4.3) 

The external device is described by the reduced matrix 

k l d ’ = z a X a d a d ‘ .  (4.4) 
The external device  is so large that it is essentially un- 
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volving a time-dependent Hamiltonian,  but only to indi- 
cate a general line of attack. Each case must be treated 
individually. In particular, we have neglected possible re- 
laxation of the system by the external device. If such relaxa- 
tion occurs it can in some cases be treated classically,zO 
or quantum mechanically as in Section 111. 

V. Applications 

The formalism of this paper  can  be applied to a wide 
variety of problems, including Brownian motion,21  modi- 
fications of the Bloch equations of motion  for spin systems 
when the  radio frequency magnetic field  is large compared 
to the dc magnetic field:* and nuclear resonance saturation 
in solids.2" Bloembergen has used the  random perturbation 
theory of Section 11 to  treat the  relaxation of a  pair of 
identical spin + nuclear moments on a molecule exhibiting 
hindered rotation?2 

Most of the applications which have not been treated 
previously?, 4 ,  lo are  rather complicated, so we restrict this 
section to a simple example which illustrates  the usefulness 
of the  notation  and ideas of this paper. This example 
is the calculation of the  relaxation time of a system of 
coupled nuclear spins in a metal, for arbitrary fixed external 
magnetic field intensity. As will be seen, the relaxation 
time changes when the external field becomes comparable 
to  the internal  internuclear m.agnetic fields, and the details 
of this change will be different depending on whether each 
nucleus sees approximately the same fluctuating magnetic 
field (due to  the electrons  in  the metal) as its near neighbors, 
or whether each nucleus sees a fluctuating magnetic field 
which is statistically independent of that seen  by its  near 
neighbors. The relaxation time is a  quantity which can be 
readily measuredz4 at sufficiently low temperatures, and 
because it depends on  the details of the fluctuating fields 
set  up by the  electrons  in the metal it is a  quantity which 
may provide useful information about  the solid state. 

We consider only temperatures well below the melting 
point, so that the positions of the nuclei can be regarded 
as fixed, and we assume that only one species of nuclear 
spin is present. The spin Hamiltonian is2$ 

liE=Xo+Xd+Xe (5.1) 

X I 1  is the energy of the spins with respect to the  external 
field : 

Xo= -gpHo Z I Z l z  (5.2) 

where g is the nuclear g-factor, /3 is the Bohr  magneton, 
Ho is the applied magnetic field in gauss, assumed to be 
in the z-direction, and I J r  is the  z  component of the spin 
angular momentum operator (in units of fz) of the  j'th 
nucleus. 

3Cd is the classical dipolar  interaction: 

. 7 C d = g ' ~ ~ ~ ~ k > J ( ~ J ~ . ~ ~ ~ I , ~ I i r - 3 ~ J k ~ ~ ~ r l ~ . ~ l , r I ~ . I ~ ) ,  (5.3) 

where r J k  is the vector connecting the positions of nuclei 
j and k.  

X, is the so-called exchange energy, which  in the nuclear 
spin case usually arises from  indirect coupling via the 

electronic spins (the  interaction X, is an example of the 
operator N in Section 111): 

It will be clear to the  reader that it is impossible to solve 
this Hamiltonian, so that  the Wangsness-Bloch formalism 
cannot be applied directly. 

For a measurement of the relaxation time, the spin 
system is perturbedl3 in such a way that it is no longer in 
the state corresponding to thermal equilibrium. Observa- 
tions are then made on the spin system as  a  function of 
time, in such a way that  the spin system is not importantly 
affected by the method of observation. In general it is 
impossible to solve the equation of motion (2.30) (which 
applies in this case because of the  rapid  motion of the 
electrons) or even to specify the initial density matrix of 
the system with precision. Therefore, we must resort to 
making a simplifying assumption about  the  state of the 
system in order  to have a meaningful theory  (or  a mean- 
ingful experiment, for that matter).  The assumption we 
make is that  the spin system is always in a  canonical dis- 
tribution of states, described by a spin temperaturezfi which 
is different from the lattice temperature: u p u ( T s ) ,  where 
T,, is the spin temperature.  This is a questionable assump- 
tion, but it is probably not grossly incorrect if there is no 
large rf field applied, and there  appears to be no more 
satisfactory alternative. 

At any presently attainable  temperature the thermal 
energy kT is always much larger than the magnetic encrgy 
of a nuclear spin, and the  same applies to kT, .  Therefore 
we can write 

a~C'(I-((,7C~,+cXjd+X~),lkT,~], (5 .5 )  

where c' is a  normalization constant: C= (21+ l)-.v. 
The ensemble average expectation value of any observ- 

able 0 is given  by the diagonal  sum  (trace) of the  product 
Ou: 

((0))= Tr(0u) =8agOnpup,. (5.6) 

Using the  properties of the spin operators 1; we have 

(5.9) 

Here Xo(T,J is the static nuclear susceptibility 
Ng2/PI(I+ I ) /kT,  corresponding to temperature T,\, N is 

the  total  number of nuclear spins, and ( (AH)' is the 
VanVleck expression for the second moment (in Gauss 
squared) of the nuclear resonance line which  would be 
observed in  a powdered (randomly  oriented) sample of 
the metal : 
( (AH)z )A"= %gzP2Z(Z+ 1) ZJ>krJk-c /N (5.10) 

The  rate of change of the energy of the spin system is 
given by 

(5.11) 27 
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If we assume that the density matrix can always be approx- 
imated by (5 .5 ) ,  we get from (2.30) 
d 

where is the thermal equilibrium value of (( f i E ) ) ,  
and 

1 
TL Tr E' (5 .13 )  

TL is the measuredz4 spin-lattice relaxation time of the spin 
system. To evaluate TL we must make an assumption about 
the relaxation mechanism. We wish to restrict ourselves 
to relaxation by conduction  electrons in a metal. The 
hyperfine interaction between the electronic and nuclear 
spins is responsible for relaxation in this case, and w""kT, 
so that  the condition for fast  correlation time is met. We 
use the semi-classical formalism of Section 11, and consider 
only two extreme cases. 

Case I : Uncorrelated  Relaxation 

( @ E ) )  = - ( ( @ E ) )  - ((hE))O)/TL, (5.12) 

- = -  Tr ~, ,~,[Kq' , [Kq,EIIk, , , (0)E 

fast. It is not  hard to see the reason  for this behavior. 
Individual nuclei are relaxed independently in a time TI, 
under the assumption (5.14). If most of the energy rZE is 
in the form of Xo, as it is for  large Ho,  the energy will 
approach equilibrium as fast  as single spins do, since Xa 
is a sum of single spin operators. This rate is l / 7 1 .  On the 
other hand, if Ho is small, the energy operator is a sum of 
products of two spin operators,  and  the expectation value 
of each of these spin operators will be changed in an average 
time T,, so that  the average value of the Hamiltonian will 
change in half this time, or  at a rate 2/T, .  In other words, 
the energy can change either through a flip of one spin 
(in time T I )  or of the  other spin with which it interacts (in 
time T,), and  the energy relaxation time should thus be 
half as large as the individual spin relaxation time. 

Case 11: Correlated  Relaxation 

We now consider what would happen if the fluctuating 
field seen by one nucleus is identical to  that  at its near 
neighbors. This would be the case in a metal with an almost 

We  assume that empty or full band, in which the wavelengths of the elec- 
trons  are large compared to a  lattice spacing, so that  the 

(5 '14 )  electrons are unlocalizable and  the hyperfine interaction 
where v=x,,v,z. In other words, it is assumed that each field is more Or less the Same for near neighbors. 
spin feels a magnetic field Hi(f) as a  result of its interaction Such spatial  correlation can be expressed in terms of 
with the electrons in the metal. AI] the H,(f) have the Same the correlation  functions Of the  components Of the fluctu- 
random character  and are statistically independent: ating fields H,(t): 

C = ~ , , ~ S P  H J V ( f ) l j P ,  

kiYi ,Y~(0)=gS/12 Hlv( t )Hi tv , ( t - r )dr  lrn 
=6JJ~6vv1/2T1. (5 .15 )  

It is easily verified that if the spins were non-interacting 
( X d = O ) ,  their magnetization would obey the Bloch equa- 
tions, with TI = T2 and TI defined  by (5 .15 ) .  KorringaZ7 has 
calculated TI quantum mechanically for a real metal. 

The factor 6jit occurring in (5 .15)  implies that the field 
H, seen by the nucleus j is uncorrelated with the field 
H,, seen by nucleus j', so that all the nuclei are relaxed 
independently. The factor l i V v r  implies that each component 
of the field on a given nucleus is uncorrelated with either 
of the other two components; i.e. the field H, is random 
in both direction and magnitude. 

Physically this corresponds to a metal in which the 
electron wavelength is short compared to a lattice spacing. 
In such  a case the individual electrons can be regarded  as 
localized in less than a unit cell, and  the electronic wave 
function at  one nucleus has little relation to  the wave 
function at a  neighbor. The effective hyperfine magnetic 
field due  to  the electrons is then also more or less uncor- 
related from one nucleus to its near neighbors. 

Using (5.14) in (5.13) we get 

(5.16) 

with 6 = ~ = 2 .  

For large Ho, where X. is dominant, TL = TI as expected. 
28 For small Ha, TLE+T~ and relaxation  takes place twice as 

k j y j ~ Y ~ = 6 Y Y ~ / 2 T , ,  ( 5 .  I5a) 

for all nuclei j and j' which are sufficiently close to con- 
tribute  appreciably to  the spin-spin energy. (5.15a) can 
hold only if H,(r) =H,,(t). 

Substituting in (5.13), we find that TL, is given by (5.16) 
with 6 = 3 and E =O. 

The fact that E = 0 is a reflection of the invariance of the 
I,-Ik (exchange) interaction  under  rotation of both spins 
(jand k)  through  the same angle. I f  both spins see identical 
fluctuating fields they will both be turned  through the 
same angle no matter  what the field  is. The fact that 6 = 3 
is similarly a reflection of the strong dependence of the 
dipolar interaction between two spins on an equal  rotation 
of the two spins through the same angle. 

In a  real metal'3 the relaxation time will be somewhere 
between these two cases, usually nearer Case 1 .  The prob- 
lem  is straightforward to work out by the methods of 
Section 111, but is too complicated to include in the present 
paper, in the absence of any experimental results. 

VI. Concluding remarks 

The most unsatisfactory features of the  theories outlined 
in  this paper are  the assumption of re-randomization of 
the thermal  bath  [equation (3 .8) ] ,  and the assumption that 
the bath and external device are uncorrelated with the 
system [equations (3.8) and (4.5)]. The first assumption is 
basic to  the theory of irreversible processes, and is dis- 
cussed in a sophisticated way  by Van Hove?8 for quantum 
mechanical systems, and classically by Brout  and Prigo- 
gine.2g We have not attempted to  contribute  to these dis- 
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cussions, but have merely tried to  treat the  more pedestrian 
problem of finding the most general and convenient density 
matrix equation of motion which results from these as- 
sumptions. 

The writer wishes to thank J. L. Lebowitz, F. Bloch, 
N. Bloembergen, H. Brooks, E. P. Gross, P. J. Price, and 
I. Solomon for helpful comments and encouragement. 

Appendix A 

We  will now discuss the independently developed work of 
Blochlo and its  relation to  the formalism in this paper. 

Bloch’s paper is primarily concerned with the  treatment 
of relaxation of a system whose Hamiltonian  contains an 
important time dependence, whereas the present paper is 
aimed more  toward  the problem of complicated systems 
with relatively unimportant time variation. Bloch’s theory 
should be applicable to a system with a more  rapid time 
dependence than ours, although his general formalism is 
necessarily so complicated as to be  difficult to apply to any 
but the simplest physical systems. 

Bloch transforms away the system Hamiltonian fiE(t) by 
transforming  into  a generalized interaction representation. 
In this representation the interaction G acquires a time de- 
pendence which is a  function of the time dependence of E(t), 
and which Bloch assumes can be Fourier analyzed. Presum- 
ably this would always be possible if the time dependence 
of E(t) were reasonable, and it would  be relatively easy if 
E(t) contained only a few sinusoidal components  as is 
usually the case experimentally. 

Once the interaction C has been Fourier analyzed, the 
theory becomes similar to Wangsness and Bloch’s earlier 
work.”, However, in  his current paperlo Bloch includes a 
discussion equivalent to  our discussion of secular and non- 
secular relaxation in Section 11, generalized to take  account 
of the time dependence of E, and  as  a result gets the less 
stringent conditions of validity for  the  theory which we 
give in Section 111. 

Bloch specializes his general theory to  treat a slowly 
varying Hamiltonian, and gets an equation of motion 
identical in physical content and validity to his earlier 
work and  our Section 111. This  equation of motion can be 
applied to systems as complicated as those treated in the 
present paper, and  the only advantages of the  treatment 
we have presented here are  that  the notation is  designed 
specifically to be applied to complicated systems where 
possible, and  that  the connection to the semiclassical the- 
ory of Section 11 is more explicitly made. 

Although Bloch’s paper does not contain  anything like 
our Section IV, it is likely that his theory could be made to 
give higher order corrections of the type (4.14). Bloch’s 
formalism is more likely to be useful than  our Section IV 
because he essentially expands the time dependence of the 
Hamiltonian in a  Fourier series, whereas in our Section 
1V it is expanded in a power series. 

Appendix B 

We give here some more  of the details of the calculation 
leading to equation (2.1 1 ) .  

The first second-order  term of (2.8) is 

( a,~‘”t( t+At)a,( l ) ( t+At)  ) = 

[+At  

ZBB‘flBB’*(t) ( J Gala,t(t’)e-i(n’-8’)t’dt’ 
1 

G ab, (t”)ei(a-B)l”~t” ), (B1) 

To get (Bl) we used (2.7), and assumed that  the a,(t) are 
independent of C(t’) (since t‘- t>>~~ over most of the  range 
of integration At>>r,). 

Setting ~=t‘-t’‘, and changing to new variables of 
integration, we  get for  (BI) 

Z ~ ~ , ~ ~ ~ ~ * ( ~ 4 t d r ~ , ~ . ~ ~ . ( r ) e - i ( ~ - ~ ) ~  

t+At+r 
dt’ei(a-8-af+8’)t‘ 1 . (B2) 

Changing T to -T in the second term, and carrying out  the 
integrations over t‘, we get the first two terms of (2.11). 
The last two terms follow similarly from the remaining 
second order terms of (2.8). 

Appendix C 

To get the equation of motion (3.9) quantum mechanically, 
one can  either solve the  equation of motion2 of the  total 
density matrix p to second order in G, or solve Schroe- 
dinger’s equation to second order in G and use the defi- 
nitions of p and u to get the time variation of u. Wangsness 
and Bloch3a4 use the first method; we use the second. 

At time t each member of the ensemble is described by a 
wave function of the  form 

*( t )  = ~ a f u a n f , ( t ) e ~ i ( a + f ) t  + , ( P J ~ ,  (CI) 

where pjU is an eigenfunction of F having eigenvalue f 
and degeneracy parameter u. 

The solution of Schroedinger’s equation is  given  by 
(Cl), with 

a,,,(t+At) =Z,a,/U(”’(t+4t), (C2) 

where a,, ,(”)(t+At)  =a,fU(t);  (C3) 

IBM JOURNAL * JANUARY 1957 



The reduced density matrix u,,,(t+At) is  given by 

Znn’fu ( ua,fu(n)(f+AT)a,fu(“’)(t+At) ) ei(a”u)(t+At).  (C6) 

The first  term (n’=n=O) of (C6) is simply u,,,(t). Sub- 
tracting this term,  and dividing by At, gives the equation 
of motion (3.9), provided u(f)  is assumed given  by (3.8). 
We now discuss in more detail the origin of each term in 
(3.9). 

The  commutator i[u,E] comes from  the factor ei(a”u)L 
in (C6). 

The  commutator i[u,M] comes from  the two first order 
terms in (C6), i.e. terms with n’+n= 1. Their evaluation is 
straightforward, and  to get the  commutator  one can either 
take the limit At-0, or assume  a finite At, in which case 
one must go through an argument like that in Section 11 
about non-secular terms of the  operator M. 

The  commutator i[u,N] comes from  second order terms 
of the type given by the product of times that  part 
of u,J2) which contains the first term in the  square bracket 
in (C5). There  are two such terms, and if the non-secular 
terms are treated  as before, these can be written i[u U -  $a], 
with the non-Hermitian  matrix U given by 

u,,*= U , t ,  

=Zqq,yKayqKy,,q‘ d ~ j ~ , , ( - ~ ) / ~ ( a - ~ - w ) .  (C7) s: 
If we replace U,,l by N,,, we  will introduce  an  error of 
the order of (a-a‘)U(diYY’/dw)/jgrifN(a-a’)U/w*. How- 
ever, in the time At the effect of Uaal on u is never larger 
than U/(a-a’), if a#a’, so that  the  total  error introduced 
in u is of the  order of U/w*, which is within the accuracy 
of the  theory  in general. Therefore it is permissible to 
replace U by the Hermitian  form N. 

The relaxation  terms Ru come from  the remaining second 
order terms in (C6). As an example, we outline the evalua- 
tion of the  term  in (C6) with n=n’= 1 which yields the 
first two terms of the relaxation  matrix R. 

Changing the sums over J’and f’ into integrations, and 
changing variables of integration to f and w =J”f’, we get 
for this term 

ZBBruPg,  ZgqrK,gqKgl,r~’ dw At jqg l (w)  ei(a”a-fi”@)t s 
The evaluation of those  terms of (C8) for which 

a-0 =a’-P’ is straightforward  and is identical to the evalu- 
ation of time proportional  transition probabilities. In this 
case it is assumed that jqq,(w) can  be replaced by the con- 
stant j,,t(a -0). Since the expression in the  square  brackets 

30 is large only for a range of w of At-l around a-b, this 

introduces an  error in R of R(aj,,tjdw)/At j,,t”R/w*At and 
a  corresponding error in u of the order of R/w*.  This error 
is  negligible within the accuracy of this theory. 

The evaluation of the non-secular terms for which 
a-P#a’-P’ is also accomplished by replacing j,,,(w) by a 
constant. In this case we can replace jYql(w) by either 
jq,zf(a-fi) or jqqr(a’-O’), or  any convenient intermediate 
value, by the same argument used above in connection 
with the replacement of the non-Hermitian  matrix U by N. 
The Cauchy principal value of the integral of the expression 
in the  square  bracket  in (C8) is easily shown by contour 
integration to be 

Taking  for jqqt(w) in (C8) the symmetric form &(a-P)+ 
)jqa,(a’-P’) we get an expression corresponding to  that 
part of the first order (in R )  solution of (3.9) contributed 
by the  first two terms of R .  

The  other two terms of R are obtained similarly from 
the remaining second order terms of (C6). In  the last two 
terms of R it is possible to change j,,@’-y) to.jqqf(a’--y), 
or a convenient linear  combination  thereof, and  to change 
.j,,,,(fl-y) similarly, without  introducing an  error in u 
large compared to the existing error in the theory, of 
order R/w*.  
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